عرض تفاصيل البحث

ادناه جميع التفاصيل الخاصة بالبحث المطلوب عرضه. توفر هذه المنصة معلومات اساسية حول البحث, لمزيد من التفاصيل يرجى متابعة التصفح من خلال الضغط على الرابط الاصلي للبحث او رابط DOI.

عنوان البحث
Segmentation Of Brain Tissue Using Improved Kernelized Rough-Fuzzy C-Means Technique
عنوان المجلة
Indonesian Journal Of Electrical Engineering And Computer Sciencethis Link Is Disabled.,
ISSN-2502-4752
تفاصيل النشر
سنة النشر - 2023 / الفهرس الاصلي للمجلة - 32 : 1 (عدد الصفحات 10)
تصنيف البحث
computer science - المجموعة العلمية
البحث والاستدامة
الهدف 3 – الصحة الجيدة والرفاه   المزيد حول هذا الهدف
البحث والمجتمع
نعم , يدعم

اسم الباحثجهة الانتساببلد الباحث
Hiyam Hatem University of Sumer Iraq
Raed Majeed University of Sumer Iraq

ain magnetic resonance imaging (MRI) data is a hot topic in the domains of biomedical engineering and machine learning. Without locating anomalies, such as tumors and edema, radiologists and other medical experts cannot effectively recommend or administer therapy for patients. Having three different magnetic resonance techniques (T1 weighted, T2 weighted, and T3 weighted), MRI can produce detailed multimodal scans of different human brain tissues with varying contrast, which can help pinpoint the source of any abnormalities. The cerebrospinal fluid (CSF), white matter (WM), and grey matter (GM) are all components of the brain, and their boundaries are sometimes hazy and difficult to nail down. In light of the problems above, this paper makes an effort to tackle issues like: i) the noise that exists in the brain datasets for MRI, ii) the fuzziness, uncertainty, overlap, indiscernibility of complex brain tissue regions, iii) the inability of traditional unsupervised methods to reliably distinguish between various brain tissue locations, and iv) ineffective performance. We propose some robust techniques by utilise spatial contextual data, a rough set, a fuzzy set, and ultimately a fuzzy set to steer the clustering process in a better direction, allowing it to deal with likely noise, outliers, and other artifacts.
© رئاسة جامعة سومر