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Preface

The primary objective of this book is to serve as a textbook for students who take a

senior undergraduate or a first-year graduate course on real-time embedded sys-

tems, also called cyber-physical systems. The structure of the book – the material is

organized into 14 chapters – maps to the 14 weeks of a semester. The book is also

intended for practitioners in industry who want to learn about the state of the art in

real-time embedded system design and need a reference book that explains the

fundamental concepts of the field. More than 1,000 students used the first edition of

this book, published about 14 years ago, as a text for the real-time systems course at

the Vienna University of Technology. The feedback from these students and many

new developments in this dynamic field of embedded real-time systems have been

incorporated in this fundamentally revised second edition of the book. The focus of

the book is on the design of distributed real-time systems at the architecture level.

While a significant part of the established computer science literature abstracts from

the progression of real-time, real-time system designers cannot get away with such

an abstraction. In this book, the progression of physical time is considered a first-

order citizen that shapes many of the relevant concepts. The book explains the

fundamental concepts related to the progression of time on a number of practical

insightful examples from industry. The conceptual model of a distributed real-time

distributed system has been extended and precise definitions of important time-

related concepts, such as sparse time, state, temporal accuracy of real-time data,
and determinism are given.

Since the evolving cognitive complexity of large computer systems is a topic

of utmost concern, a new chapter on simplicity has been included in this second

edition. This chapter builds on some of the recent insights from the field of

cognition – concerning concept formation, understanding, human simplification

strategies and model building – and formulates seven principles that lead to

the design of simple systems. These principles are followed in the remaining

12 chapters of the book. The other two new chapters, one on energy and power
awareness, and one on the Internet of things cover topics of increasing importance

in the enormous market of mobile devices. The chapters on communication,
dependability, system design, and validation have been substantially revised with
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a focus on component-based and model-based design. The chapter on dependability
includes new sections on security and safety. The final chapter describes the

time-triggered architecture that integrates all presented concepts into a coherent

framework for the development of dependable embedded real-time systems. Since

the first edition of the book has been published, a visible paradigm shift from

the event-triggered to the time-triggered design methodology for dependable

distributed real-time systems has taken place in a number of applications.

It is assumed that the reader of this book has a background in basic computer

science or computer engineering or has some practical experience in the design or

implementation of embedded systems.

The glossary at the end of the book is an integral part of the book, providing

definitions for many of the technical terms that are used throughout the book. If

the reader is not sure about the meaning of a term, she/he is advised to refer to the

glossary.
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Chapter 1

The Real-Time Environment

Overview The purpose of this introductory chapter is to describe the environment

of real-time computer systems from a number of different perspectives. A solid

understanding of the technical and economic factors that characterize a real-time

application helps to interpret the demands that the system designer must cope with.

The chapter starts with the definition of a real-time system and with a discussion of

its functional and meta-functional requirements. Particular emphasis is placed on

the temporal requirements that are derived from the well-understood properties of

control applications. The objective of a control algorithm is to drive a process such

that a performance criterion is satisfied. Random disturbances occurring in the

environment degrade system performance and must be taken into account by the

control algorithm. Any additional uncertainty that is introduced into the control

loop by the control system itself, e.g., a non-predictable jitter of the control loop,

results in a degradation of the quality of control.

In the Sects. 1.2 to 1.5 real-time applications are classified from a number of

viewpoints. Special emphasis is placed on the fundamental differences between

hard and soft real-time systems. Because soft real-time systems do not have severe

failure modes, a less rigorous approach to their design is often followed. Sometimes

resource-inadequate solutions that will not handle the rarely occurring peak-load

scenarios are accepted on economic arguments. In a hard real-time application,

such an approach is unacceptable because the safety of a design in all specified

situations, even if they occur only very rarely, must be demonstrated vis-a-vis a

certification agency. In Sect. 1.6, a brief analysis of the real-time system market is

carried out with emphasis on the field of embedded real-time systems. An embed-

ded real-time system is a part of a self-contained product, e.g., a television set or an

automobile. Embedded real-time systems, also called cyber-physical (CPS) sys-
tems, form the most important market segment for real-time technology and the

computer industry in general.

H. Kopetz, Real-Time Systems: Design Principles for Distributed Embedded Applications,
Real-Time Systems Series, DOI 10.1007/978-1-4419-8237-7_1,
# Springer Science+Business Media, LLC 2011
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1.1 When Is a Computer System Real-Time?

A real-time computer system is a computer system where the correctness of the

system behavior depends not only on the logical results of the computations, but

also on the physical time when these results are produced. By system behavior we
mean the sequence of outputs in time of a system.

We model the flow of time by a directed time line that extends from the past into

the future. A cut of the time line is called an instant. Any ideal occurrence that

happens at an instant is called an event. Information that describes an event (see

also Sect. 5.2.4 on event observation) is called event information. The present point
in time, now, is a very special event that separates the past from the future (the

presented model of time is based on Newtonian physics and disregards relativistic

effects). An interval on the time line, called a duration, is defined by two events, the
start event and the terminating event of the interval. A digital clock partitions the

time line into a sequence of equally spaced durations, called the granules of

the clock, which are delimited by special periodic events, the ticks of the clock.
A real-time computer system is always part of a larger system – this larger

system is called a real-time system or a cyber-physical system. A real-time system

changes as a function of physical time, e.g., a chemical reaction continues to change

its state even after its controlling computer system has stopped. It is reasonable to

decompose a real-time system into a set of self-contained subsystems called

clusters. Examples of clusters are (Fig. 1.1): the physical plant or machine that is

to be controlled (the controlled cluster), the real-time computer system (the

computational cluster;) and, the human operator (the operator cluster). We refer

to the controlled cluster and the operator cluster collectively as the environment of
the computational cluster (the real-time computer system).

If the real-time computer system is distributed (and most of them are), it consists

of a set of (computer) nodes interconnected by a real-time communication network.

The interface between the human operator and the real-time computer system is

called the man–machine interface, and the interface between the controlled object

and the real-time computer system is called the instrumentation interface. The
man–machine interface consists of input devices (e.g., keyboard) and output

devices (e.g., display) that interface to the human operator. The instrumentation

man-machine
interface

instrumentation
interface

controlled
object

controlled
cluster

real-time
computer
system

computational
cluster

operator

operator
cluster

Fig. 1.1 Real-time system
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interface consists of the sensors and actuators that transform the physical signals

(e.g., voltages, currents) in the controlled cluster into a digital form and vice versa.
A real-time computer system must react to stimuli from its environment (the

controlled cluster or the operator cluster) within time intervals dictated by its

environment. The instant when a result must be produced is called a deadline.
If a result has utility even after the deadline has passed, the deadline is classified as

soft, otherwise it is firm. If severe consequences could result if a firm deadline is

missed, the deadline is called hard.

Example: Consider a traffic signal at a road before a railway crossing. If the traffic signal

does not change to red before the train arrives, an accident could result.

A real-time computer system that must meet at least one hard deadline is called a

hard real-time computer system or a safety-critical real-time computer system. If no
hard deadline exists, then the system is called a soft real-time computer system.

The design of a hard real-time system is fundamentally different from the design

of a soft real-time system. While a hard real-time computer system must sustain a

guaranteed temporal behavior under all specified load and fault conditions, it is

permissible for a soft real-time computer system to miss a deadline occasionally.

The differences between soft and hard real-time systems will be discussed in detail

in the following sections. The focus of this book is on the design of hard real-time

systems.

1.2 Functional Requirements

The functional requirements of real-time systems are concerned with the functions

that a real-time computer system must perform. They are grouped into data

collection requirements, direct digital control requirements, and man–machine

interaction requirements.

1.2.1 Data Collection

A controlled object, e.g., a car or an industrial plant, changes its state as a function

of time (whenever we use the word time without a qualifier, we mean physical time
as described in Sect. 3.1). If we freeze the time, we can describe the current state of

the controlled object by recording the values of its state variables at that moment.

Possible state variables of a controlled object car are the position of the car, the

speed of the car, the position of switches on the dashboard, and the position of a

piston in a cylinder. We are normally not interested in all state variables, but only in
the subset of state variables that is significant for our purpose. A significant state

variable is called a real-time (RT) entity.

1.2 Functional Requirements 3



Every RT entity is in the sphere of control (SOC) of a subsystem, i.e., it belongs

to a subsystem that has the authority to change the value of this RT entity (see also

Sect. 5.1.1). Outside its sphere of control, the value of an RT entity can be observed,

but its semantic content (see Sect. 2.2.4) cannot be modified. For example, the

current position of a piston in a cylinder of the engine is in the sphere of control of

the engine. Outside the car engine the current position of the piston can only be

observed, but we are not allowed to modify the semantic content of this observation
(the representation of the semantic content can be changed!).

The first functional requirement of a real-time computer system is the observation

of the RT entities in a controlled cluster and the collection of these observations.

An observation of an RT entity is represented by a real-time (RT) image in the

computer system. Since the state of a controlled object in the controlled cluster is a
function of real time, a given RT image is only temporally accurate for a limited

time interval. The length of this time interval depends on the dynamics of the

controlled object. If the state of the controlled object changes very quickly, the

corresponding RT image has a very short accuracy interval.

Example: Consider the example of Fig. 1.2, where a car enters an intersection controlled

by a traffic light. How long is the observation the traffic light is green temporally accurate?

If the information the traffic light is green is used outside its accuracy interval, i.e., a car

enters the intersection after the traffic light has switched to red, an accident may occur. In

this example, an upper bound for the accuracy interval is given by the duration of the

yellow phase of the traffic light.

The set of all temporally accurate real-time images of the controlled cluster is called

the real-time database. The real-time database must be updated whenever an RT

entity changes its value. These updates can be performed periodically, triggered by the

progression of the real-time clock by a fixed period (time-triggered (TT) observation),
or immediately after a change of state, which constitutes an event, occurs in the RT

entity (event-triggered (ET) observation). A more detailed analysis of time-triggered

and event-triggered observations will be presented in Chaps. 4 and 5.

Signal Conditioning. A physical sensor, e.g., a thermocouple, produces a raw data
element (e.g., a voltage). Often, a sequence of raw data elements is collected and

an averaging algorithm is applied to reduce the measurement error. In the next step

the raw data must be calibrated and transformed to standard measurement units.

how long is the observation:
"the traffic light is green"
temporally accurate?

Fig. 1.2 Temporal accuracy

of the traffic light information
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The term signal conditioning is used to refer to all the processing steps that are

necessary to obtain meaningful measured data of an RT entity from the raw sensor

data. After signal conditioning, the measured data must be checked for plausibility

and related to other measured data to detect a possible fault of the sensor. A data

element that is judged to be a correct RT image of the corresponding RT entity is

called an agreed data element.

Alarm Monitoring. An important function of a real-time computer system is the

continuous monitoring of the RT entities to detect abnormal process behaviors.

Example: The rupture of a pipe, a primary event, in a chemical plant will cause many RT

entities (diverse pressures, temperatures, liquid levels) to deviate from their normal

operating ranges, and to cross some preset alarm limits, thereby generating a set of

correlated alarms, which is called an alarm shower.

The real-time computer system must detect and display these alarms and must assist

the operator in identifying a primary event that was the initial cause of these alarms.

For this purpose, alarms that are observed must be logged in a special alarm log

with the exact instant when the alarm occurred. The exact temporal order of the

alarms is helpful in identifying the secondary alarms, i.e., all alarms that can be

a causal consequence of the primary event. In complex industrial plants, sophi-

sticated knowledge-based systems are used to assist the operator in the alarm

analysis.

Example: In the final report on the August 14, 2003 power blackout in the United States

and Canada we find on [Tas03, p. 162], the following statement: A valuable lesson from the
August 14 blackout is the importance of having time-synchronized system data recorders.
The Task Force’s investigators labored over thousands of data items to determine the
sequence of events much like putting together small pieces of a very large puzzle. That
process would have been significantly faster and easier if there had been wider use of
synchronized data recording devices.

A situation that occurs infrequently but is of utmost concern when it does occur is

called a rare-event situation. The validation of the performance of a real-time

computer system in a rare event situation is a challenging task and requires models

of the physical environment (see Sect. 11.3.1).

Example: The sole purpose of a nuclear power plant monitoring and shutdown system is

reliable performance in a peak-load alarm situation (a rare event). Hopefully, this rare

event will never occur during the operational life of the plant.

1.2.2 Direct Digital Control

Many real-time computer systems must calculate the actuating variables for the
actuators in order to control the controlled object directly (direct digital control –
DDC), i.e., without any underlying conventional control system.

Control applications are highly regular, consisting of an (infinite) sequence

of control cycles, each one starting with sampling (observing) of the RT entities,
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followed by the execution of the control algorithm to calculate a new actuating

variable, and subsequently by the output of the actuating variable to the actuator.

The design of a proper control algorithm that achieves the desired control objec-

tive, and compensates for the random disturbances that perturb the controlled

object, is the topic of the field of control engineering. In the next section on

temporal requirements, some basic notions of control engineering will be

introduced.

1.2.3 Man–Machine Interaction

A real-time computer system must inform the operator of the current state of the

controlled object, and must assist the operator in controlling the machine or plant

object. This is accomplished via the man–machine interface, a critical subsystem of

major importance. Many severe computer-related accidents in safety-critical real-

time systems have been traced to mistakes made at the man–machine interface

[Lev95].

Example: Mode confusion at the man–machine interface of an aircraft has been identified

to be the cause of major aircraft accidents [Deg95].

Most process-control applications contain, as part of the man–machine interface, an

extensive data logging and data reporting subsystem that is designed according to

the demands of the particular industry.

Example: In some countries, the pharmaceutical industry is required by law to record and

store all relevant process parameters of every production batch in an archival storage in

order that the process conditions prevailing at the time of a production run can be

reexamined in case a defective product is identified on the market at a later time.

Man–machine interfacing has become such an important issue in the design of

computer-based systems that a number of courses dealing with this topic have been

developed. In the context of this book, we will introduce an abstract man–machine

interface in Sect. 4.5.2, but we will not cover its design in detail. The interested

reader is referred to standard textbooks on user interface design.

1.3 Temporal Requirements

1.3.1 Where Do Temporal Requirements Come from?

The most stringent temporal demands for real-time systems have their origin in the

requirements of control loops, e.g., in the control of a fast process such as an

automotive engine. The temporal requirements at the man–machine interface are, in
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comparison, less stringent because the human perception delay, in the range of

50–100 ms, is orders of magnitude larger than the latency requirements of fast

control loops.

A Simple Control Loop. Consider the simple control loop depicted in Fig. 1.3

consisting of a vessel with a liquid, a heat exchanger connected to a steam pipe,

and a controlling computer system. The objective of the computer system is to

control the valve (control variable) determining the flow of steam through the heat

exchanger such that the temperature of the liquid in the vessel remains within a

small range around the set point selected by the operator.

The focus of the following discussion is on the temporal properties of this

simple control loop consisting of a controlled object and a controlling computer
system.

The Controlled Object. Assume that the system of Fig. 1.3 is in equilibrium.

Whenever the steam flow is increased by a step function, the temperature of the

liquid in the vessel will change according to Fig. 1.4 until a new equilibrium is

reached. This response function of the temperature in the vessel depends on the

environmental conditions, e.g., the amount of liquid in the vessel, and the flow of

steam through the heat exchanger, i.e., on the dynamics of the controlled object.

(In the following section, we will use d to denote a duration and t to denote an

instant, i.e., a point in time).

controlled
object

controlling computer system

control valve
for steam flow
flow sensor
steam pipe

temperature
sensor

set point selected
by an operator

F

Fig. 1.3 A simple control loop

temperature of liquid
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dobject

steam flow
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off

drise

te
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Fig. 1.4 Delay and rise time

of the step response
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There are two important temporal parameters characterizing this elementary

step response function, the object delay d object (sometimes called the lag time
or lag) after which the measured variable temperature begins to rise (caused by

the initial inertia of the process and the instrumentation, called the process lag)
and the rise time d rise of the temperature until the new equilibrium state has

been reached. To determine the object delay d object and the rise time d rise from a

given experimentally recorded shape of the step-response function, one finds

the two points in time where the response function has reached 10% and 90%

of the difference between the two stationary equilibrium values. These two points

are connected by a straight line (Fig. 1.4). The significant points in time that

characterize the object delay d object and the rise time d rise of the step response

function are constructed by finding the intersection of this straight line with

the two horizontal lines that denote the two liquid temperatures that correspond

to the stable equilibrium states before and after the application of the step

function.

Controlling Computer System. The controlling computer system must sample the

temperature of the vessel periodically to detect any deviation between the intended

value and the actual value of the controlled variable temperature. The constant

duration between two sampling points is called the sampling period d sample and the

reciprocal 1/d sample is the sampling frequency, f sample. A rule of thumb says that,

in a digital system which is expected to behave like a quasi-continuous system,

the sampling period should be less than one-tenth of the rise time d rise of the step

response function of the controlled object, i.e., d sample < (d rise/10). The computer

compares the measured temperature to the temperature set point selected by

the operator and calculates the error term. This error term forms the basis for the

calculation of a new value of the control variable by a control algorithm. A given

time interval after each sampling point, called the computer delay d computer, the

controlling computer will output this new value of the actuating variable to

the control valve, thus closing the control loop. The delay d computer should be

smaller than the sampling period d sample.

The difference between the maximum and the minimum values of the delay of

the computer is called the jitter of the computer delay, Dd computer. This jitter is a
sensitive parameter for the quality of control.

The dead time of the control loop is the time interval between the observation of

the RT entity and the start of a reaction of the controlled object due to a computer

action based on this observation. The dead time is the sum of the controlled object

delay d object, which is in the sphere of control of the controlled object and is thus

determined by the controlled object’s dynamics, and the computer delay d computer,

which is determined by the computer implementation. To reduce the dead time in a

control loop and to improve the stability of the control loop, these delays should be

as small as possible. The computer delay d computer is defined by the time interval

between the sampling points, i.e., the observation of the controlled object, and the

use of this information (see Fig. 1.5), i.e., the output of the corresponding actuator

signal, the actuating variable, to the controlled object. Apart from the necessary

8 1 The Real-Time Environment



time for performing the calculations, the computer delay is determined by the time

required for communication and the reaction time of the actuator.

Parameters of a Control Loop. Table 1.1 summarizes the temporal parameters that

characterize the elementary control loop depicted in Fig. 1.3. In the first two

columns we denote the symbol and the name of the parameter. The third column

denotes the sphere of control in which the parameter is located, i.e., what subsystem

determines the value of the parameter. Finally, the fourth column indicates the

relationships between these temporal parameters.

1.3.2 Minimal Latency Jitter

The data items in control applications are state-based, i.e., they contain images of the

RT entities. The computational actions in control applications are mostly time-

triggered, e.g., the control signal for obtaining a sample is derived from the progres-

sion of time within the computer system. This control signal is thus in the sphere of

control of the computer system. It is known in advance when the next control action

must take place. Many control algorithms are based on the assumption that the delay

jitter Dd computer is very small compared to the delay d computer, i.e., the delay is close

to constant. This assumption is made because control algorithms can be designed to

compensate a known constant delay. Delay jitter brings an additional uncertainty

into the control loop that has an adverse effect on the quality of control. The jitter Dd
can be seen as an uncertainty about the instant when the RT-entity was observed.

This jitter can be interpreted as causing an additional value error DT of the measured

variable temperature T as shown in Fig. 1.6. Therefore, the delay jitter should always

be a small fraction of the delay, i.e., if a delay of 1 ms is demanded then the delay

jitter should be in the range of a few ms [SAE95].

observation of the
controlled object

delay jitter:
variability of the delay Δd

delay dcomputer output to
the acutator

real-time

Fig. 1.5 Delay and delay

jitter

Table 1.1 Parameters of an elementary control loop

Symbol Parameter Sphere of control Relationships

dobject Controlled object delay Controlled object Physical process

drise Rise time of step response Controlled object Physical process

dsample Sampling period Computer dsample < < drise

dcomputer Computer delay Computer dcomputer < dsample

Ddcomputer Jitter of the computer delay Computer Ddcomputer < < dcomputer

ddeadtime Dead time Computer and controlled

object

dcomputer + dobject
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1.3.3 Minimal Error-Detection Latency

Hard real-time applications are, by definition, safety-critical. It is therefore important

that any error within the control system, e.g., the loss or corruption of a message or

the failure of a node, is detected within a short time with a very high probability.

The required error-detection latency must be in the same order of magnitude as the

sampling period of the fastest critical control loop. It is then possible to perform

some corrective action, or to bring the system into a safe state, before the conse-

quences of an error can cause any severe system failure. Almost-no-jitter systems

will have shorter guaranteed error-detection latencies than systems that allow

for jitter.

1.4 Dependability Requirements

The notion of dependability covers the meta-functional attributes of a computer

system that relate to the quality of service a system delivers to its users during an

extended interval of time. (A user could be a human or another technical system.)

The following measures of dependability attributes are of importance [Avi04]:

1.4.1 Reliability

The Reliability R(t) of a system is the probability that a system will provide the

specified service until time t, given that the system was operational at the beginning,

i.e., t ¼ to. The probability that a system will fail in a given interval of time is

expressed by the failure rate, measured in FITs (Failure In Time). A failure rate of

1 FIT means that the mean time to a failure (MTTF) of a device is 109 h, i.e., one
failure occurs in about 115,000 years. If a system has a constant failure rate of

l failures/h, then the reliability at time t is given by

RðtÞ ¼ expð�lðt� toÞÞ;

te
m

p.

jitter 

=

Δd

additional
measurement

error ΔT
ΔT dT(t)

dt

real-time

Fig. 1.6 The effect of jitter

on the measured variable T
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where t � to is given in hours. The inverse of the failure rate 1/l ¼ MTTF is called

the Mean-Time-To-Failure MTTF (in hours). If the failure rate of a system is

required to be in the order of 10�9 failures/h or lower, then we speak of a system

with an ultrahigh reliability requirement.

1.4.2 Safety

Safety is reliability regarding critical failure modes. A critical failure mode is said

to be malign, in contrast with a noncritical failure, which is benign. In a malign

failure mode, the cost of a failure can be orders of magnitude higher than the utility

of the system during normal operation. Examples of malign failures are: an airplane

crash due to a failure in the flight-control system, and an automobile accident due

to a failure of a computer-controlled intelligent brake in the automobile. Safety-

critical (hard) real-time systems must have a failure rate with regard to critical

failure modes that conforms to the ultrahigh reliability requirement.

Example: Consider the example of a computer-controlled brake in an automobile. The

failure rate of a computer-caused critical brake failure must be lower than the failure rate

of a conventional braking system. Under the assumption that a car is operated about 1 h per

day on the average, one safety-critical failure per million cars per year translates into a

failure rate in the order of 10�9 failures/h.

Similarly low failure rates are required in flight-control systems, train-signaling

systems, and nuclear power plant monitoring systems.

Certification. In many cases the design of a safety-critical real-time system must be

approved by an independent certification agency. The certification process can be

simplified if the certification agency can be convinced that:

1. The subsystems that are critical for the safe operation of the system are protected

by fault-containment mechanisms that eliminate the possibility of error propa-

gation from the rest of the system into these safety-critical subsystems.

2. From the point of view of design, all scenarios that are covered by the given

load- and fault-hypothesis can be handled according to the specification without

reference to probabilistic arguments. This makes a resource adequate design

necessary.

3. The architecture supports a constructive modular certification process where the

certification of subsystems can be done independently of each other. At the

system level, only the emergent properties must be validated.

[Joh92] specifies the required properties for a system that is designed for
validation:

1. A complete and accurate reliabilitymodel can be constructed.All parameters of the

model that cannot be deduced analytically must be measurable in feasible time

under test.
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2. The reliability model does not include state transitions representing design

faults; analytical arguments must be presented to show that design faults will

not cause system failure.

3. Design tradeoffs are made in favor of designs that minimize the number of

parameters that must be measured (see Sect. 2.2.1).

1.4.3 Maintainability

Maintainability is a measure of the time interval required to repair a system after the

occurrence of a benign failure. Maintainability is measured by the probabilityM (d)
that the system is restored within a time interval d after the failure. In keeping with

the reliability formalism, a constant repair rate m (repairs per hour) and aMean Time
to Repair (MTTR) are introduced to define a quantitative maintainability measure.

There is a fundamental conflict between reliability and maintainability.

A maintainable design requires the partitioning of a system into a set of field
replaceable units (FRUs) connected by serviceable interfaces that can be easily

disconnected and reconnected to replace a faulty FRU in case of a failure.

A serviceable interface, e.g., a plug connection, has a significantly higher physical

failure rate than a non-serviceable interface. Furthermore, a serviceable interface is

more expensive to produce.

In the upcoming field of ambient intelligence, automatic diagnosis and main-
tainability by an untrained end user will be important system properties that are

critical for the market success of a product.

1.4.4 Availability

Availability is a measure of the delivery of correct service with respect to the

alternation of correct and incorrect service. It is measured by the fraction of time

that the system is ready to provide the service.

Example: Whenever a user picks up the phone, the telephone switching system should be

ready to provide the telephone service with a very high probability. A telephone exchange

is allowed to be out of service for only a few minutes per year.

In systems with constant failure and repair rates, the reliability (MTTF), maintain-

ability (MTTR), and availability (A) measures are related by

A ¼ MTTF MTTF þMTTRð Þ= :

The sum MTTF þ MTTR is sometimes called the Mean Time Between Failures
(MTBF). Figure 1.7 shows the relationship between MTTF, MTTR, and MTBF.
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A high availability can be achieved either by a long MTTF or by a short MTTR.
The designer has thus some freedom in the selection of her/his approach to the

construction of a high-availability system.

1.4.5 Security

Afifth important attribute of dependability – the security attribute – is concerned with
the authenticity and integrity of information, and the ability of a system to prevent

unauthorized access to information or services (see also Sect. 6.2). There are diffi-

culties in defining a quantitative security measure, e.g., the specification of a standard
burglar that takes a certain time to intrude a system. Traditionally, security issues

have been associated with large databases, where the concerns are confidentiality,

privacy, and authenticity of information. During the last few years, security issues

have also become important in real-time systems, e.g., a cryptographic theft-avoid-

ance system that locks the ignition of a car if the user cannot present the specified

access code. In the Internet-of-Things (IoT), where the endpoints of the Internet are
embedded systems that bridge the gap between the cyber world and physical word,

security concerns are of crucial importance, since an intruder cannot only corrupt a

data structure in a computer, but can cause harm in the physical environment.

1.5 Classification of Real-Time Systems

In this section we classify real-time systems from different perspectives. The first

two classifications, hard real-time versus soft real-time (on-line), and fail-safe
versus fail-operational, depend on the characteristics of the application, i.e., on

factors outside the computer system. The second three classifications, guaranteed-
timeliness versus best effort, resource-adequate versus resource-inadequate, and
event-triggered versus time-triggered, depend on the design and implementation of

the computer application, i.e., on factors inside the computer system.

1.5.1 Hard Real-Time System Versus Soft Real-Time System

The design of a hard real-time system, which always must produce the results at the

correct instant, is fundamentally different from the design of a soft-real time or an
on-line system, such as a transaction processing system. In this section we will

up

down MTTR
MTBF

failure

MTTF

repair failure
system state

real-time

Fig. 1.7 Relationship

between MTTF, MTBF and

MTTR
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elaborate on these differences. Table 1.2 compares the characteristics of hard real-

time systems versus soft real-time systems.

Response Time. The demanding response time requirements of hard real-time

applications, often in the order of milliseconds or less, preclude direct human

intervention during normal operation or in critical situations. A hard real-time

system must be highly autonomous to maintain safe operation of the process. In

contrast, the response time requirements of soft real-time and on-line systems are

often in the order of seconds. Furthermore, if a deadline is missed in a soft real-time

system, no catastrophe can result.

Peak-load Performance. In a hard real-time system, the peak-load scenario must

be well defined. It must be guaranteed by design that the computer system meets the

specified deadlines in all situations, since the utility of many hard real-time

applications depends on their predictable performance during rare event scenarios
leading to a peak load. This is in contrast to the situation in a soft-real time system,

where the average performance is important, and a degraded operation in a rarely

occurring peak load case is tolerated for economic reasons.

Control of Pace. A hard real-time computer system is often paced by the state

changes occurring in the environment. It must keep up with the state of the

environment (the controlled object and the human operator) under all circum-

stances. This is in contrast to an on-line system, which can exercise some control

over the environment in case it cannot process the offered load.

Example: Consider the case of a transaction processing system, such as an airline

reservation system. If the computer cannot keep up with the demands of the users, it just

extends the response time and forces the users to slow down.

Safety. The safety criticality of many real-time applications has a number of

consequences for the system designer. In particular, error detection and recovery

must be autonomous such that the system can initiate appropriate recovery actions

and arrive at a safe state within the time intervals dictated by the application without

human intervention.

Size of Data Files. The real-time database that is composed of the temporally

accurate images of the RT-entities is normally of small size. The key concern in

Table 1.2 Hard real-time versus soft real-time systems

Characteristic Hard real-time Soft real-time (on-line)

Response time Hard-required Soft-desired

Peak-load performance Predictable Degraded

Control of pace Environment Computer

Safety Often critical Non-critical

Size of data files Small/medium Large

Redundancy type Active Checkpoint–recovery

Data integrity Short-term Long-term

Error detection Autonomous User assisted
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hard real-time systems is on the short-term temporal accuracy of the real-time

database that is invalidated by the flow of real-time. In contrast, in on-line transac-

tion processing systems, the maintenance of the long-term integrity and availability

of large data files is the key issue.

Redundancy Type. After an error has been detected in an on-line system, the

computation is rolled back to a previously established checkpoint to initiate a

recovery action. In hard real-time systems, roll-back/recovery is of limited utility

for the following reasons:

1. It is difficult to guarantee the deadline after the occurrence of an error, since the

roll-back/recovery action can take an unpredictable amount of time.

2. An irrevocable action that has been effected on the environment cannot be

undone.

3. The temporal accuracy of the checkpoint data may be invalidated by the time

difference between the checkpoint time and the instant now.

The topic of temporal accuracy of real-time data is discussed at length in Sect. 5.4

while the issues of error detection and types of redundancy are dealt with in Chap. 6.

1.5.2 Fail-Safe Versus Fail-Operational

In many hard real-time systems one or more safe states, which can be reached in case

of a system failure, can be identified. If such a safe state can be identified and quickly

reached upon the occurrence of a failure, then we call the system fail-safe. Fail-
safeness is a characteristic of the controlled object, not the computer system. In fail-

safe applications the computer systemmust have a high error-detection coverage, i.e.,
the probability that an error is detected, provided it has occurred, must be close to one.

Example: In case a failure is detected in a railway signaling system, it is possible to set

all signals to red and thus stop all the trains in order to bring the system to a safe state.

In many real-time computer systems a special external device, a watchdog, is
provided to monitor the operation of the computer system. The computer system

must send a periodic life-sign (e.g., a digital output of predefined form) to the

watchdog. If this life-sign fails to arrive at the watchdog within the specified time

interval, the watchdog assumes that the computer system has failed and forces the

controlled object into a safe state. In such a system, timeliness is needed only to

achieve high availability, but is not needed to maintain safety since the watchdog

forces the controlled object into a safe state in case of a timing violation.

There are, however, applications where a safe state cannot be identified, e.g.,

a flight control system aboard an airplane. In such an application the computer

system must remain operational and provide a minimal level of service even in the

case of a failure to avoid a catastrophe. This is why these applications are called

fail-operational.
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1.5.3 Guaranteed-Response Versus Best-Effort

If we start out with a specified fault- and load-hypothesis and deliver a design that

makes it possible to reason about the adequacy of the design without reference to

probabilistic arguments (even in the case of a peak load and fault scenario), then we

can speak of a system with a guaranteed response. The probability of failure of a

perfect system with guaranteed response is reduced to the probability that the

assumptions about the peak load and the number and types of faults do not hold in

reality. This probability is called assumption coverage [Pow95]. Guaranteed response
systems require careful planning and extensive analysis during the design phase.

If such an analytic response guarantee cannot be given, we speak of a best-effort
design. Best-effort systems do not require a rigorous specification of the load- and

fault-hypothesis. The design proceeds according to the principle best possible effort
taken and the sufficiency of the design is established during the test and integration
phases. It is difficult to establish that a best-effort design operates correctly in a

rare-event scenario. At present, many non safety-critical real-time systems are

designed according to the best-effort paradigm.

1.5.4 Resource-Adequate Versus Resource-Inadequate

Guaranteed response systems are based on the principle of resource adequacy, i.e.,

there are enough computing resources available to handle the specified peak load

and the fault scenario. Many non safety-critical real-time system designs are based

on the principle of resource inadequacy. It is assumed that the provision of

sufficient resources to handle every possible situation is not economically viable,

and that a dynamic resource allocation strategy based on resource sharing and

probabilistic arguments about the expected load and fault scenarios is acceptable.

It is expected that, in the future, there will be a paradigm shift to resource-

adequate designs in many applications. The use of computers in important volume-

based applications, e.g., in cars, raises both the public awareness as well as concerns

about computer-related incidents, and forces the designer to provide convincing

arguments that the design functions properly under all stated conditions. Hard real-
time systems must be designed according to the guaranteed response paradigm that

requires the availability of adequate resources.

1.5.5 Event-Triggered Versus Time-Triggered

The distinction between event-triggered and time-triggered depends on the type of

internal triggers and not the external behavior of a real-time system. A trigger is an
event that causes the start of some action in the computer, e.g., the execution of a
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task or the transmission of a message. Depending on the triggering mechanisms for

the start of communication and processing actions in each node of a computer

system, two distinctly different approaches to the design of the control mechanisms

of real-time computer applications can be identified, event-triggered control and
time-triggered control.

In event-triggered (ET) control, all communication and processing activities are

initiated whenever a significant event other than the regular event of a clock tick

occurs. In an ET system, the signaling of significant events to the central processing

unit (CPU) of a computer is realized by the well-known interrupt mechanism.

ET systems require a dynamic scheduling strategy to activate the appropriate

software task that services the event.

In a time-triggered (TT) system, all activities are initiated by the progression of

real-time. There is only one interrupt in each node of a distributed TT system, the

periodic real-time clock interrupt. Every communication or processing activity is

initiated at a periodically occurring predetermined tick of a clock. In a distributed

TT real-time system, it is assumed that the clocks of all nodes are synchronized to

form a global time that is available at every node. Every observation of the

controlled object is time-stamped with this global time. The granularity of the

global time must be chosen such that the time order of any two observations

made anywhere in a distributed TT system can be established from their time-

stamps with adequate faithfulness [Kop09]. The topics of global time and clock

synchronization will be discussed at length in Chap. 3.

Example: The distinction between event-triggered and time-triggered can be explained

by an example of an elevator control system. When you push a call button in the event-

triggered implementation, the event is immediately relayed to the interrupt system of

the computer in order to start the action of calling the elevator. In a time-triggered system,

the button push is stored locally, and periodically, e.g., every second, the computer asks

to get the state of all push buttons. The flow of control in a time-triggered system is

managed by the progression of time, while in an event-triggered system; the flow of

control is determined by the events that happen in the environment or the computer

system.

1.6 The Real-Time Systems Market

In a market economy, the cost/performance relation is a decisive parameter for the

market success of any product. There are only a few scenarios where cost arguments

are not the major concern. The total life-cycle cost of a product can be broken down

into three rough categories: non-recurring development cost, production cost, and

operation and maintenance cost. Depending on the product type, the distribution

of the total life-cycle cost over these three cost categories can vary significantly.

We will examine this life cycle cost distribution by looking at two important

examples of real-time systems, embedded real-time systems and plant-automation

systems.
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1.6.1 Embedded Real-Time Systems

The ever-decreasing price/performance ratio of microcontrollers makes it econo-

mically attractive to replace conventional mechanical or electronic control system

within many products by an embedded real-time computer system. There are

numerous examples of products with embedded computer systems: cellular phones,

engine controllers in cars, heart pacemakers, computer printers, television sets,

washing machines, even some electric razors contain a microcontroller with some

thousand instructions of software code. Because the external interfaces (particularly

the man–machine interface) of the product often remain unchanged relative to the

previous product generation, it is often not visible from the outside that a real-time

computer system is controlling the product behavior.

Characteristics. An embedded real-time computer system is always part of

a well-specified larger system, which we call an intelligent product. An intelligent
product consists of a physical (mechanical) subsystem; the controlling embedded

computer, and, most often, a man–machine interface. The ultimate success of

any intelligent product depends on the relevance and quality of service it can

provide to its users. A focus on the genuine user needs is thus of utmost

importance.

Embedded systems have a number of distinctive characteristics that influence

the system development process:

1. Mass Production: many embedded systems are designed for a mass market and

consequently for mass production in highly automated assembly plants. This

implies that the production cost of a single unit must be as low as possible,

i.e., efficient memory and processor utilization are of concern.

2. Static Structure: the computer system is embedded in an intelligent product of

given functionality and rigid structure. The known a priori static environment

can be analyzed at design time to simplify the software, to increase the robust-

ness, and to improve the efficiency of the embedded computer system. In many

embedded systems there is no need for flexible dynamic software mechanisms.

These mechanisms increase the resource requirements and lead to an unneces-

sary complexity of the implementation.

3. Man–Machine Interface: if an embedded system has a man–machine interface,

it must be specifically designed for the stated purpose and must be easy to

operate. Ideally, the use of the intelligent product should be self-explanatory,

and not require any training or reference to an operating manual.

4. Minimization of the Mechanical Subsystem: to reduce the manufacturing cost

and to increase the reliability of the intelligent product, the complexity of the

mechanical subsystem is minimized.

5. Functionality Determined by Software in Read-Only Memory (ROM): the

integrated software that often resides in ROM determines the functionality of

many intelligent products. Since it is not possible to modify the software in a

ROM after its release, the quality standards for this software are high.
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6. Maintenance Strategy: many intelligent products are designed to be non

maintainable, because the partitioning of the product into replaceable units is

too expensive. If, however, a product is designed to be maintained in the field,

the provision of an excellent diagnostic interface and a self-evident maintenance

strategy is of importance.

7. Ability to communicate: many intelligent products are required to interconnect

with some larger system or the Internet. Whenever a connection to the Internet

is supported, the topic of security is of utmost concern.

8. Limited amount of energy: Many mobile embedded devices are powered by a

battery. The lifetime of a battery load is a critical parameter for the utility of

a system.

A large fraction of the life-cycle cost of many intelligent products is in the

production, i.e., in the hardware. The known a priori static configuration of

the intelligent product can be used to reduce the resource requirements, and thus

the production cost, and also to increase the robustness of the embedded computer

system. Maintenance cost can become significant, particularly if an undetected

design fault (software fault) requires a recall of the product, and the replacement

of a complete production series.

Example: In [Neu96] we find the following laconic one-liner: General Motors recalls
almost 300 K cars for engine software flaw.

Future Trends. During the last few years, the variety and number of embedded

computer applications have grown to the point that, by now, this segment is by far

the most important one in the computer market. The embedded system market is

driven by the continuing improvements in the cost/performance ratio of the semi-

conductor industry that makes computer-based control systems cost-competitive

relative to their mechanical, hydraulic, and electronic counterparts. Among the key

mass markets are the domains of consumer electronics and automotive electronics.

The automotive electronics market is of particular interest, because of stringent

timing, dependability, and cost requirements that act as technology catalysts.
Automotive manufacturers view the proper exploitation of computer technology

as a key competitive element in the never-ending quest for increased vehicle

performance and reduced manufacturing cost. While some years ago, the computer

applications on board a car focused on non-critical body electronics or comfort

functions, there is now a substantial growth in the computer control of core vehicle

functions, e.g., engine control, brake control, transmission control, and suspension

control. We observe an integration of many of these functions with the goal of

increasing the vehicle stability in critical driving maneuvers. Obviously, an error in

any of these core vehicle functions has severe safety implications.

At present the topic of computer safety in cars is approached at two levels. At the

basic level a mechanical system provides the proven safety level that is considered

sufficient to operate the car. The computer system provides optimized performance

on top of the basic mechanical system. In case the computer system fails cleanly,

the mechanical system takes over. Consider, for example, an Electronic Stability
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Program (ESP). If the computer fails, the conventional mechanical brake system

is still operational. Soon, this approach to safety may reach its limits for two

reasons:

1. If the computer-controlled system is further improved, the magnitude of the

difference between the performance of the computer-controlled system and the

performance of the basic mechanical system is further increased. A driver who is

used to the high performance of the computer-controlled system might consider

the fallback to the inferior performance of the mechanical system a safety risk.

2. The improved price/performance of the microelectronic devices will make the

implementation of fault-tolerant computer systems cheaper than the implemen-

tation of mixed computer/mechanical systems. Thus, there will be an economic

pressure to eliminate the redundant mechanical system and to replace it with a

computer system using active redundancy.

The embedded system market is expected to grow significantly during the next

10 years. It is expected that many embedded systems will be connected to the

Internet, forming the Internet of Things (IoT – see Chap. 13).

1.6.2 Plant Automation Systems

Characteristics. Historically, industrial plant automation was the first field for the

application of real-time digital computer control. This is understandable since the

benefits that can be gained by the computerization of a sizable plant are much larger

than the cost of even an expensive process control computer of the late 1960s. In the

early days, human operators controlled the industrial plants locally. With the

refinement of industrial plant instrumentation and the availability of remote auto-

matic controllers, plant monitoring and command facilities were concentrated into a

central control room, thus reducing the number of operators required to run the

plant. In the 1970s, the next logical step was the introduction of central process

control computers to monitor the plant and assist the operator in her/his routine

functions, e.g., data logging and operator guidance. In the beginning, the computer

was considered an add-on facility that was not fully trusted. It was the duty of the

operator to judge whether a set point calculated by a computer made sense and

could be applied to the process (open-loop control). In the next phase, Supervisory
Control and Data Acquisition (SCADA) systems calculated the set-points for the

programmable logic controllers (PLC) in the plant. With the improvement of the

process models and the growth of the reliability of the computer, control functions

have been increasingly allocated to the computer and gradually the operator has

been taken out of the control loop (closed-loop control). Sophisticated non-linear

control techniques, which have response time requirements beyond human cap-

abilities, have been implemented.

Usually, every plant automation system is unique. There is an extensive amount

of engineering and software effort required to adapt the computer system to the
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physical layout, the operating strategy, the rules and regulations, and the reporting

system of a particular plant. To reduce these engineering and software efforts, many

process control companies have developed a set of modular building blocks, which

can be configured individually to meet the requirements of a customer. Compared

to the development cost, the production cost (hardware cost) is of minor impor-

tance. Maintenance cost can be an issue if a maintenance technician must be on-site

for 24 h in order to minimize the downtime of a plant.

Future Trends. The market of industrial plant automation systems is limited by the

number of plants that are newly constructed or are refurbished to install a computer

control system. During the last 20 years, many plants have already been automated.

This investment must pay off before a new generation of computers and control

equipment is installed.

Furthermore, the installation of a new generation of control equipment in a

production plant causes disruption in the operation of the plant with a costly loss

of production that must be justified economically. This is difficult if the plant’s

efficiency is already high, and the margin for further improvement by refined

computer control is limited.

The size of the plant automation market is too small to support the mass

production of special application-specific components. This is the reason why

many VLSI components that are developed for other application domains, such

as automotive electronics, are taken up by this market to reduce the system cost.

Examples of such components are sensors, actuators, real-time local area networks,

and processing nodes. Already several process-control companies have announced

a new generation of process-control equipment that takes advantage the of low-

priced mass produced components that have been developed for the automotive

market, such as the chips developed for the Controller Area Network (CAN – see

Sect. 7.3.2).

1.6.3 Multimedia Systems

Characteristics. The multimedia market is a mass market for specially designed

soft and firm real-time systems. Although the deadlines for many multimedia tasks,

such as the synchronization of audio and video streams, are firm, they are not hard

deadlines. An occasional failure to meet a deadline results in a degradation of the

quality of the user experience, but will not cause a catastrophe. The processing

power required to transport and render a continuous video stream is large and

difficult to estimate, because it is possible to improve a good picture even further.

The resource allocation strategy in multimedia applications is thus quite different

from that of hard real-time applications; it is not determined by the given applica-

tion requirements, but by the amount of available resources. A fraction of the given

computational resources (processing power, memory, bandwidth) is allocated to a

user domain. Quality of experience considerations at the end user determine the
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detailed resource allocation strategy. For example, if a user reduces the size of a

window and enlarges the size of another window on his multimedia terminal, then

the system can reduce the bandwidth and the processing allocated to the first

window to free the resources for the other window that has been enlarged. Other

users of the system should not be affected by this local reallocation of resources.

Future Trends. The marriage of the Internet with smart phones and multimedia

personal computers leads to many new volume applications. The focus of this book

is not on multimedia systems, because these systems belong to the class of soft and

firm real-time applications.

1.7 Examples of Real-Time Systems

In this section, three typical examples of real-time systems are introduced. These

examples will be used throughout the book to explain the evolving concepts.

We start with an example of a very simple system for flow control to demonstrate

the need for end-to-end protocols in process input/output.

1.7.1 Controlling the Flow in a Pipe

It is the objective of the simple control system depicted in Fig. 1.8 to control the

flow of a liquid in a pipe. A given flow set point determined by a client should be

maintained despite changing environmental conditions. Examples for such chang-

ing conditions are the varying level of the liquid in the vessel or the temperature

sensitive viscosity of the liquid. The computer interacts with the controlled object

by setting the position of the control valve. It then observes the reaction of the

controlled object by reading the flow sensor F to determine whether the desired

effect, the intended change of flow, has been achieved. This is a typical example of

the necessary end-to-end protocol [Sal84] that must be put in place between the

computer and the controlled object (see also Sect. 7.1.2). In a well-engineered

system, the effect of any control action of the computer must be monitored by one

or more independent sensors. For this purpose, many actuators contain a number of

sensors in the same physical housing. For example, the control valve in Fig. 1.8

might contain a sensor, which measures the mechanical position of the valve in the

computer
flow
setpoint

F

flow
sensor

control
valve

Fig. 1.8 Flow of liquid

in a pipe

22 1 The Real-Time Environment



pipe, and two limit switches, which indicate the firmly closed and the completely

open positions of the valve. A rule of thumb is that there are about three to seven

sensors for every actuator.

The dynamics of the system in Fig. 1.8 is essentially determined by the speed of

the control valve. Assume that the control valve takes 10 s to open or close from 0%

to 100%, and that the flow sensor F has a precision of 1%. If a sampling interval of

100 ms is chosen, the maximum change of the valve position within one sampling

interval is 1%, the same as the precision of the flow sensor. Because of this finite

speed of the control valve, an output action taken by the computer at a given time

will lead to an effect in the environment at some later time. The observation of this

effect by the computer will be further delayed by the given latency of the sensor.

All these latencies must either be derived analytically or measured experimentally,

before the temporal control structure for a stable control system can be designed.

1.7.2 Engine Control

The task of an engine controller in an automobile engine is the calculation of the

proper amount of fuel and the exact moment at which the fuel must be injected into

the combustion chamber of each cylinder. The amount of fuel and the timing

depend on a multitude of parameters: the intentions of the driver, articulated by

the position of the accelerator pedal, the current load on the engine, the temperature

of the engine, the condition of the cylinder, and many more. A modern engine

controller is a complex piece of equipment. Up to 100 concurrently executing

software tasks must cooperate in tight synchronization to achieve the desired

goal, a smoothly running and efficient engine with a minimal output of pollutants.

The up- and downward moving piston in each cylinder of a combustion engine is

connected to a rotating axle, the crankshaft. The intended start point of fuel

injection is relative to the position of the piston in the cylinder, and must be precise

within an accuracy of about 0.1� of the measured angular position of the crankshaft.

The precise angular position of the crankshaft is measured by a number of digital

sensors that generate a rising edge of a signal at the instant when the crankshaft

passes these defined positions. Consider an engine that turns with 6,000 rpm

(revolutions per minute), i.e., the crankshaft takes 10 ms for a 360� rotation. If

the required precision of 0.1� is transformed into the time domain, then a temporal

accuracy of 3 ms is required. The fuel injection is realized by opening a solenoid

valve or a piezoelectric actuator that controls the fuel flow from a high-pressure

reservoir into the cylinder. The latency between giving an open command to the

valve and the actual point in time when the valve opens can be in the order of

hundreds of ms, and changes considerably depending on environmental conditions

(e.g., temperature). To be able to compensate for this latency jitter, a sensor signal

indicates the point in time when the valve has actually opened. The duration

between the execution of the output command by the computer and the start of

opening of the valve is measured during every engine cycle. The measured latency
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is used to determine when the output command must be executed during the next

cycle so that the intended effect, the start of fuel injection, happens at the proper

point in time.

This example of an engine controller has been chosen because it demonstrates

convincingly the need for extremely precise temporal control. For example, if the

processing of the signal that measures the exact position of the crankshaft in the

engine is delayed by a few ms, the quality of control of the whole system is

compromised. It can even happen that the engine is mechanically damaged if a

valve is opened at an incorrect moment.

1.7.3 Rolling Mill

A typical example of a distributed plant automation system is the computer control

of a rolling mill. In this application a slab of steel (or some other material, such as

paper) is rolled to a strip and coiled. The rolling mill of Fig. 1.9 has three drives and

some instrumentation to measure the quality of the rolled product. The distributed

computer-control system of this rolling mill consists of seven nodes connected by a

real-time communication system. The most important sequence of actions – we call

this a real-time (RT) transaction – in this application starts with the reading of the

sensor values by the sensor computer. Then, the RT transaction passes through the

model computer that calculates new set points for the three drives, and finally

reaches the control computers to achieve the desired action by readjusting the rolls

of the mill. The RT-transaction thus consists of three processing actions connected

by two communication actions.

The total duration of the RT transaction (bold line in Fig. 1.9) is an important

parameter for the quality of control. The shorter the duration of this transaction, the

better the control quality and the stability of the control loop, since this transaction

contributes to the dead time of the critical control loop. The other important term of

the dead time is the time it takes for the strip to travel from the drive to the sensor.

A jitter in the dead time that is not compensated for will reduce the quality of

man-machine
interface (MMI)

real-time bus

RT-transaction
between sensor
and actuator

model MMI

sensorcontrolcontrolcontrol

comm.

Fig. 1.9 An RT transaction
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control significantly. It is evident from Fig. 1.9 that the latency jitter in an

event-triggered system is the sum of the jitter of all processing and communication

actions that form the critical RT transaction.

Note that the communication pattern among the nodes of this control system is

multicast, not point-to-point. This is typical for most distributed real-time control

systems. Furthermore, the communication between the model node and the drive

nodes has an atomicity requirement. Either all of the drives are changed according

to the output of the model, or none of them is changed. The loss of a message, which

may result in the failure of a drive to readjust to a new position, may cause

mechanical damage to the drive.

Points to Remember

l A real-time computer system must react to stimuli from the controlled object

(or the operator) within time intervals dictated by its environment. If a catastro-

phe could result in case a firm deadline is missed, the deadline is called hard.
l In a hard real-time computer system, it must be guaranteed by design that the

computer system will meet the specified deadlines in all situations because the

utility of many hard real-time applications can depend on predictable perfor-

mance during a peak load scenario.
l A hard real-time system must maintain synchrony with the state of the environ-

ment (the controlled object and the human operator) in all operational scenarios.

It is thus paced by the state changes occurring in the environment.
l Because the state of the controlled object changes as a function of real-time, an

observation is temporally accurate only for a limited time interval.
l A trigger is an event that causes the start of some action, e.g., the execution of a

task or the transmission of a message.
l Real-time systems have only small data files, the real-time database that is

formed by the temporally accurate images of the RT-entities. The key concern

is on the short-term temporal accuracy of the real-time database that is invali-

dated by the flow of real-time.
l The real-time database must be updated whenever an RT entity changes its value.

This update can be performed periodically, triggered by the progression of the

real-time clock by a fixed period (time-triggered observation), or immediately

after the occurrence of an event in the RT entity (event-triggered observation).
l The most stringent temporal demands for real-time systems have their origin in

the requirements of the control loops.
l The temporal behavior of a simple controlled object can be characterized by

process lag and rise time of the step-response function.
l The dead time of a control loop is the time interval between the observation of

the RT entity and the start of a reaction of the controlled object as a consequence

of a computer action based on this observation.
l Many control algorithms are based on the assumption that the delay jitter is a

very small fraction of the delay since control algorithms are designed to
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compensate a known constant delay. Delay jitter brings an additional uncertainty

into the control loop that has an adverse effect on the quality of control.
l The term signal conditioning is used to refer to all processing steps that are

needed to get a meaningful RT image of an RT entity from the raw sensor data.
l The Reliability R(t) of a system is the probability that a system will provide the

specified service until time t, given that the system was operational at t ¼ to.
l If the failure rate of a system is required to be about 10�9 failures/h or lower,

then we are dealing with a system with an ultrahigh reliability requirement.
l Safety is reliability regarding malign (critical) failure modes. In a malign failure

mode, the cost of a failure can be orders of magnitude higher than the utility of

the system during normal operation.
l Maintainability is a measure of the time it takes to repair a system after the last

experienced benign failure, and is measured by the probability M(d) that the
system is restored within a time interval d after the failure.

l Availability is a measure for the correct service delivery regarding the alterna-

tion of correct and incorrect service, and is measured by the probability A(t) that
the system is ready to provide the service at time t.

l The main security concerns in real-time systems are the authenticity, integrity,
and timeliness of the real-time information.

l The probability of failure of a perfect system with guaranteed response is

reduced to the probability that the assumptions concerning the peak load and

the number and types of faults are valid in reality.
l If we start out from a specified fault- and load-hypothesis and deliver a design

that makes it possible to reason about the adequacy of the design without

reference to probabilistic arguments (even in the case of the extreme load and

fault scenarios) we speak of a system with a guaranteed response.
l An embedded real-time computer system is part of a well-specified larger system,

an intelligent product. An intelligent product normally consists of a mechanical

subsystem, the controlling embedded computer, and a man–machine interface.
l The static configuration, known a priori, of the intelligent product can be used to

reduce the resource requirements and increase the robustness of the embedded

computer system.
l Usually, every plant automation system is unique. Compared to development cost,

the production cost (hardware cost) of a plant automation system is less important.
l The embedded system market is expected to grow significantly during the next

10 years. Compared with other information technology markets, this market will

offer the best employment opportunities for the computer engineers of the future.
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Review Questions and Problems

1.1 What makes a computer system a real-time computer system?

1.2 What are typical functions that a real-time computer system must perform?

1.4 Where do the temporal requirements come from? What are the parameters

that describe the temporal characteristics of a controlled object?

1.5 Give a “rule of thumb” that relates the sampling period in a quasi-continuous

system to the rise time of the step-response function of the controlled object.

1.6 What are the effects of delay and delay jitter on the quality of control?

Compare the error-detection latency in systems with and without jitter.

1.7 What does signal conditioning mean?

1.8 Consider an RT entity that changes its value periodically according to

vðtÞ ¼ Ao sinð2pt=TÞ where T, the period of the oscillation, is 100 ms. What

is the maximum change of value of this RT entity within a time interval of

1 ms? (express the result in percentage of the amplitude Ao).
1.9 Consider an engine that rotates with 3,000 rpm. By how many degrees will the

crankshaft turn within 1 ms?

1.10 Give some examples where the predictable rare-event performance deter-

mines the utility of a hard real-time system.

1.11 Consider a fail-safe application. Is it necessary that the computer system

provides guaranteed timeliness to maintain the safety of the application?

What is the level of error-detection coverage required in an ultrahigh depend-

ability application?

1.12 What is the difference between availability and reliability? What is the

relationship between maintainability and reliability?

1.13 When is there a simple relation between the MTTF and the failure rate?

1.14 Assume you are asked to certify a safety-critical control system. How would

you proceed?

1.15 What are the main differences between a soft real-time system and a hard real-

time system?

1.16 Why is an end-to-end protocol required at the interface between the computer

system and the controlled object?

1.17 What is the fraction development cost/production cost in embedded systems and

inplant automation systems?Howdoes this relation influence the systemdesign?

1.19 Assume that an automotive company produces 2,000,000 electronic engine

controllers of a special type. The following design alternatives are discussed:
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(a) Construct the engine control unit as a single SRU with the application

software in Read Only Memory (ROM).The production cost of such a unit

is $250. In case of an error, the complete unit has to be replaced.

(b) Construct the engine control unit such that the software is contained in a

ROM that is placed on a socket and can be replaced in case of a software

error. The production cost of the unit without the ROM is $248. The cost

of the ROM is $5.

(c) Construct the engine control unit as a single SRU where the software is

loaded in a Flash EPROM that can be reloaded. The production cost of

such a unit is $255.

The labor cost of repair is assumed to be $50 for each vehicle. (It is assumed to

be the same for each one of the three alternatives). Calculate the cost of

a software error for each one of the three alternative designs if 300,000 cars

have to be recalled because of the software error (example in Sect. 1.6.1).

Which one is the lowest cost alternative if only 1,000 cars are affected by

a recall?

1.20 Estimate the relation (development cost)/(production cost) in an embedded

consumer application and in a plant automation system.

1.21 Compare the peak load (number of messages, number of task activations

inside the computer) that can be generated in an event-triggered and a time-

triggered implementation of an elevator control system!
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Chapter 2

Simplicity

Overview A recent report on Software for Dependable Systems: Sufficient
Evidence? [Jac07] by the National Academies contains as one of its central

recommendations: One key to achieving dependability at reasonable cost is a
serious and sustained commitment to simplicity, including simplicity of critical
functions and simplicity in system interactions. This commitment is often the mark
of true expertise.We consider simplicity to be the antonym of cognitive complexity
(in the rest of this book we mean cognitive complexity whenever we use the word
complexity). In every-day life, many embedded systems seem to move in the

opposite direction. The ever-increasing demands on the functionality, and the

non-functional constraints (such as safety, security, or energy consumption) that

must be satisfied by embedded systems lead to a growth in system complexity.

In this chapter we investigate the notion of cognitive complexity and develop

guidelines for building understandable computer systems. We ask the question:

What does it mean when we say we understand a scenario? We argue that it is not

the embedded system, but the models of the embedded system that must be simple

and understandable relative to the background knowledge of the observer. The

models must be based on clear concepts that capture the relevant properties of the

scenario under investigation. The semantic content of a program variable is one of

these concepts that we investigate in some detail. The major challenge of design is

the building of an artifact that can be modeled at different levels of abstraction

by models of adequate simplicity.

This chapter is structured as follows. Section 2.1 focuses on the topic of

cognition and problem solving and an elaboration of the two different human

problem-solving subsystems, the intuitive-experiential subsystem and the ana-
lytic-rational subsystem. Concept formation and the conceptual landscape, that is
the private knowledge base that a human develops over his lifetime, are discussed in

Sect. 2.2. Section 2.3 looks at the essence of model building and investigates what

makes a task difficult. Section 2.4 deals with the important topic of emergence in

large systems.

H. Kopetz, Real-Time Systems: Design Principles for Distributed Embedded Applications,
Real-Time Systems Series, DOI 10.1007/978-1-4419-8237-7_2,
# Springer Science+Business Media, LLC 2011
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2.1 Cognition

Cognition deals with the study of thought processes and the interpretation and

binding of sensory inputs to the existing knowledge base of an individual [Rei10].

It is an interdisciplinary effort that stands between the humanities, i.e., philosophy,

language studies, and social science on one side and the natural sciences, such as

neural science, logic, and computer science on the other side. The study of model

building, problem solving, and knowledge representation forms an important part

of the cognitive sciences.

2.1.1 Problem Solving

Humans have two quite different mental subsystems for solving problems: the

intuitive-experiential subsystem and the analytic-rational subsystem [Eps08].

Neuro-imaging studies have shown that these two subsystems are executed in two

different regions of the human brain [Ami01]. Table 2.1 compares some of the

distinguishing characteristics of these two subsystems.

Example: A typical task for the intuitive-experiential subsystem is face recognition, a
demanding task that a baby at the age of 6 months can accomplish. A typical task for the

analytic-rational subsystem is the confirmation of a proof of a mathematical theorem.

The experiential subsystem is a preconscious emotionally-based subsystem that

operates holistically, automatically, and rapidly, and demands minimal cognitive

resources for its execution. Since it is nearly effortless, it is used most of the time.

It is assumed that the experiential subsystem has access to a large coherent

Table 2.1 Intuitive experiential versus analytic rational. Problem solving strategy (Adapted from

[Eps08, p. 26])

Intuitive experiential Analytic rational

Holistic Analytic

Emotional (what feels good) Logical reason oriented (what is sensible?)

Unreflective associative connections Cause and effect connections, causal chains

Outcome oriented Process oriented

Behavior mediated by vibes from past

experience

Behavior mediated by conscious appraisal

of events

Encodes reality in concrete images, metaphors

and narratives

Encodes reality in abstract symbols, words,

and numbers

More rapid processing, immediate action Slower processing, delayed action

Slow to change the fundamental structure: changes

with repetitive or intense experience

Changes more rapidly, changes with the

speed of thought

Experience processed passively and pre-

consciously, seized by our emotions

Experience processed actively and

consciously, in control of our thoughts

Self evidently valid: seeing is believing Requires justification via logic and

evidence
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knowledge base that represents an implicit model of the world. This subjective

knowledge base, which is one part of what we call the conceptual landscape of an
individual, is mainly built up and maintained by experience and emotional events

that are accumulated over the lifetime of an individual. Although this knowledge

base is continually adapted and extended, its core structure is rather rigid and

cannot be changed easily. Experiential reasoning is holistic and has the tendency

to use limited information for general and broad classifications of scenarios and

subjects (e.g., this is a good or bad person). The experiential system does assimilate

the data about reality in a coherent stable conceptual framework. The concepts in

this framework are mostly linked by unconscious associative connections, where
the source of an association is often unknown.

The rational subsystem is a conscious analytic subsystem that operates according

to the laws of causality and logic. Bunge [Bun08, p. 48] defines a causality
relationship between a cause C and an event E as follows: If C happens, then
(and only then) E is always produced by it. We try to get an understanding of a

dynamic scenario by isolating a primary cause, suppressing seemingly irrelevant

detail, and establishing a unidirectional causal chain between this primary cause

and an observed effect. If cause and effect cannot be cleanly isolated, such as is the

case in a feedback scenario, or if the relationship between cause and effect is non-
deterministic (see also Sect. 5.6.1 on the definition of determinism), then it is more

difficult to understand a scenario.

Example: Consider the analysis of a car accident that is caused by the skidding of a car.

There are a number of conditions that must hold for skidding to occur: the speed of the car,

the conditions of the road (e.g., icy road), the conditions of the tires, abrupt manoeuver by

the driver, the non-optimal functioning of the computer based skid-control system, etc. In

order to simplify the model of the situation (the reality is not simplified) we often isolate a
primary cause, e.g., the speed, and consider the other conditions as secondary.

The rational subsystem is a verbal and symbolic reasoning system, driven by a

controlled and noticeable mental effort to investigate a scenario. Adult humans

have a conscious explicit model of reality in their rational subsystem, in addition to

their implicit model of reality in the experiential subsystem. These two models of

reality coincide to different degrees and form jointly the conceptual landscape of an
individual. There seem to be a nearly unlimited set of resources in the experiential

subsystem, whereas the cognitive resources that are available to the rational sub-

system are limited [Rei10].

There are many subtle interrelationships between these two problem-solving sub-

systems, which form the extremes of a continuum of problem solving strategies where

both systems cooperate to arrive at a solution. It is not infrequent that, after unsuccess-

ful tries by the rational subsystem, at first a solution to a problem is produced

unconsciously by the experiential subsystem. Afterwards this solution is justified by

analytical and logical arguments that are constructed by the rational subsystem.

Similarly, the significance of a new scenario is often recognized at first by the

experiential subsystem. At a later stage it is investigated and analyzed by the

rational subsystem and rational problem solving strategies are developed. Repeated
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encounters of similar problems – the accumulation of experience – effortful

learning and drill move the problem-solving process gradually from the rational

subsystem to the experiential subsystem, thus freeing the cognitive resources that

have previously been allocated to the problem solving process in the limited

rational subsystem. There exist many practical examples that demonstrate this

phenomenon: learning a foreign language, learning a new sport, or learning how

to drive a car. It is characteristic for a domain expert that she/he has mastered this

transition in her/his domain and mainly operates in the effortless experiential mode,

where a fast, holistic and intuitive approach to problem solving dominates.

Example: A brain-imaging study of the chess-playing strategy of amateurs versus grand-

masters investigated the activity in different sections of the brain immediately after a chess

move by the partner. The amateurs displayed the highest activity in the medial temporal
lobe of the brain, which is consistent with the interpretation that their mental activity is

focused on the rational analysis of the new move. The highly skilled grandmasters showed

more activity in the frontal and parietal cortices, indicating that they are retrieving stored

information about previous games from expert memory in order to develop an understand-
ing of the scenario [Ami01].

2.1.2 Definition of a Concept

In a changing world, knowledge about permanent and characteristic properties of

objects and situations must be identified and maintained since such knowledge is

of critical importance for survival. This knowledge is acquired by the process of

abstraction, by which the particular is subordinated to the general, so that what is

known about the general is applicable to many particulars. Abstraction is a funda-

mental task of the human cognitive system.

Example: Face recognition is an example for the powerful process of abstraction. Out of
many particular images of the face of a person – varying angles of observation, varying

distance, changing lighting conditions – characteristic permanent features of the face are

identified and stored in order that they can be used in the future to recognize the face again.

This demanding abstraction process is executed unconsciously, seemingly without effort, in

the experiential subsystem. Only its results are delivered to the rational subsystem.

Abstraction forms categories, where a category is a set of elements that share

common characteristic features. The notion of category is recursive: the elements
of a category can themselves be categories. We thus arrive at a hierarchy of

categories, going from the concrete to the abstract. At the lowest level we find

immediate sensory experiences.

A concept is a category that is augmented by a set of beliefs about its relations to
other categories [Rei10, pp. 261–300]. The set of beliefs relates a new concept to
already existing concepts and provides for an implicit theory (a subjective mental

model). As a new domain is penetrated, new concepts are formed and linked to the

concepts that are already present in the conceptual landscape. A concept is a mental

construct of the generalizable aspects of a known entity. It has an intension (What is
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the essence?) and an extension, answering the question as to which things and

mental constructs are exemplars of the concept. A concept can also be considered as

a unit of thought [Vig62].

2.1.3 Cognitive Complexity

What do we mean when we say an observer understands a scenario? It means

that the concepts and relationships that are employed in the representation of

the scenario have been adequately linked with the conceptual landscape and the

methods of reasoning of the observer. The tighter the links are, the better is
the understanding. Understanding (and therefore simplicity) is thus a relation
between an observer and a scenario, not a property of the scenario.

We take the view of Edmonds [Edm00] that complexity can only be assigned to

models of physical systems, but not to the physical systems themselves, no matter

whether these physical systems are natural or man made. A physical system has a

nearly infinite number of properties – every single transistor of a billion-transistor

system-on-chip consists of a huge number of atoms that are placed at distinct

positions in space. We need to abstract, to buildmodels that leave out the seemingly

irrelevant detail of the micro-level, in order to be able to reason about properties of

interest to us at the macro-level.

What then is a good measure for the cognitive complexity of a model? We are

looking for a quantity that measures the cognitive effort needed to understand the

model by a human observer. We consider the elapsed time needed to understand a
model by a given observer a reasonable measure for the cognitive effort and thus
for the complexity of a model relative to the observer. We assume that the given
observer is representative for the intended user group of the model.

According to the scientific tradition, it would be desirable to introduce an

objective notion of cognitive complexity without reference to the subjective

human experience. However, this does not seem to be possible, since cognitive

complexity refers to a relation between an objective external scenario and the

subjective internal conceptual landscape of the observer.

The perceived complexity of a model depends on the relationship between the

existing subjective conceptual landscape and the problem solving capability of

the observer versus the concepts deployed in the representation of the model, the

interrelations among these concepts and the notation used to represent these con-

cepts. If the observer is an expert, such as the chess grandmaster in the previous

example, the experiential subsystem provides an understanding of the scenario

within a short time and without any real effort. According to our metric, the

scenario will be judged as simple. An amateur has to go through a tedious cause-

and-effect analysis of every move employing the rational subsystem that takes time

and explicit cognitive effort. According to the above metric, the same chess

scenario will be judged as complex.
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There are models of behavior and tasks that are intrinsically difficult to
comprehend under any kind of representation. The right column of Table 2.2 in

Sect. 2.5 lists some characteristics of intrinsically difficult tasks. It may take a long

time, even for an expert in the field, to gain an understanding of a model that

requires the comprehension of the behavior of difficult tasks – if at all possible.

According to the introduced metric, these models are classified as exceedingly

complex.

In order to gain an understanding of a large system we have to understand many

models that describe the system from different viewpoints at different abstraction

levels (see also Sect. 2.3.1). The cognitive complexity of a large system depends on

the number and complexity of the different models that must be comprehended in

order to understand the complete system. The time it takes to understand all these

models can be considered as a measure for the cognitive complexity of a large
system.

Case studies about the understanding of the behavior of large systems have

shown that the perceptually available information plays an important role for

developing an understanding of a system [Hme04]. Invisible information flows
between identified subsystems pose a considerable barrier to understanding.

If every embedded system is one of its kind and no relationships between

different instances of systems can be established, then there is hardly a chance

that experience-based expert knowledge can be developed and the transition from

the tedious and effortful rational subsystem to the effortless experiential subsystem

can take place.

One route to simplification is thus the development of a generic model of an
embedded system that can be successfully deployed in many different domains at a

proper level of abstraction. This model should contain few orthogonal mechanisms

that are used recursively. The model must support simplification strategies and

make public the internal information flow between identified subsystems, such that

the process of gaining an understanding of the behavior is supported. By getting

intimately acquainted with this model and gaining experience by using this model

over and over again, the engineer can incorporate this model in the experiential

subsystem and become an expert. It is one stated goal of this book to develop such a

generic cross-domain model of embedded systems.

2.1.4 Simplification Strategies

The resources in the rational problem solving subsystem of humans, both in storage

and processing capacity, are limited. The seminal work of Miller [Mil56] intro-

duced a limit of five to seven chunks of information that can be stored in short-term

memory at a given instant. Processing limitations are established by the relational
complexity theory of Halford [Hal96]. Relational complexity is considered to

correspond to the arity (number of arguments) of a relation. For example, binary

relations have two arguments as in LARGER-THAN (elephant, mouse). The
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relational complexity theory states that the upper limits of adult cognition seem to

be relations at the quaternary level.

If a scenario requires cognitive resources that are beyond the given limits, then

humans tend to apply simplification strategies to reduce the problem size and

complexity in order that the problem can be tackled (possibly well, possibly inade-

quately) with the limited cognitive resources at hand. We know of four strategies to

simplify a complex scenario in order that it can be processed by the limited cognitive

capabilities of humans: abstraction, partitioning, isolation, and segmentation:

l Abstraction refers to the formation of a higher-level concept that captures the

essence of the problem-at-hand and reduces the complexity of the scenario by

omitting irrelevant detail that is not needed, given the purpose of the abstraction.

Abstraction is applied recursively.
l Partitioning (also known as separation of concerns) refers to the division of the

problem scenario into nearly independent parts that can be studied successfully in

isolation. Partitioning is at the core of reductionism, the preferred simplification

strategy in the natural sciences over the past 300 years. Partitioning is not always

possible. It has its limits when emergent properties are at stake.
l Isolation refers to the suppression of seemingly irrelevant detail when trying to

find a primary cause. The primary cause forms the starting point of the causal

chain that links a sequence of events between this primary cause and the

observed effect. There is a danger that the simplification strategy of isolation
leads to a too simplistic model of reality (see the example on skidding of a car in

Sect. 2.1.1).
l Segmentation refers to the temporal decomposition of intricate behavior into

smaller parts that can be processed sequentially, one after the other. Segmenta-

tion reduces the amount of information that must be processed in parallel at any

particular instant. Segmentation is difficult or impossible if the behavior is

formed by highly concurrent processes, depends on many interdependent vari-

ables and is strongly non-linear, caused by positive or negative feedback loops.

2.2 The Conceptual Landscape

The notion of conceptual landscape, or the image [Bou61], refers to the personal
knowledge base that is built up and maintained by an individual in the experiential

and rational subsystem of the mind. The knowledge base in the experiential subsys-

tem is implicit, while the knowledge base in the rational subsystem is explicit. The
conceptual landscape can be thought of as a structured network of interrelated

concepts that defines the world model, the personality, and the intentions of an

individual. It is built up over the lifetime of an individual, starting from pre-wired

structures that are established during the development of the genotype to the pheno-
type, and continually augmented as the individual interacts with its environment by

exchanging messages via the sensory systems.
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2.2.1 Concept Formation

The formation of concepts is governed by the following two principles [And01]:

l The principle of utility states that a new concept should encompass those proper-

ties of a scenario that are of utility in achieving a stated purpose. The purpose is

determined by the human desire to fulfill basic or advanced needs.
l The principle of parsimony (also called Occam’s razor) states that out of a set of

alternative conceptualizations that are of comparable utility the one that requires

the least amount of mental effort is selected.

There seems to be a natural level of categorization, neither too specific nor too

general, that is used in human communication and thinking about a domain. We call

the concepts at this natural level of categorization basic-level concepts [Rei01, p. 276].

Example: The basic level concept temperature is more fundamental than the sub-concept

oil-temperature or the encompassing concept sensor data.

Studies with children have shown that basic-level concepts are acquired earlier than
sub-concepts or encompassing concepts. As a child grows up it continually builds

and adds to its conceptual landscape by observing regularities in the perceptions and
utility in grouping properties of perceptions into new categories [Vig62]. These new

categories must be interlinked with the already existing concepts in the child’s mind

to form a consistent conceptual landscape. By abstracting not only over perceptions,
but also over already existing concepts, new concepts are formed.

A new concept requires for its formation a number of experiences that have

something in common and form the basis for the abstraction. Concept acquisition is

normally a bottom-up process, where sensory experiences or basic concepts are the

starting point. Examples, prototypes and feature specification play an important role

in concept formation. A more abstract concept is understood best bottom up by

generalizations from a set of a suitable collection of examples of already acquired

concepts. Abstract analysis and concrete interpretation and explanation should be

intertwined frequently. If one remains only at a low-level of abstraction then the

amount of non-essential detail is overwhelming. If one remains only at a high-level of
abstraction, then relationships to the world as it is experienced are difficult to form.

In the real world (in contrast to an artificial world), a precise definition of a

concept is often not possible, since many concepts become fuzzy at their boundaries

[Rei10, p. 272].

Example: How do you define the concept of dog? What are its characteristic features?

Is a dog, which has lost a leg, still a dog?

Understanding a new concept is a matter of establishing connections between the

new concept and already familiar concepts that are well embedded in the concep-

tual landscape.

Example: In order to understand the new concept of counterfeit money, one must relate

this new concept to the following already familiar concepts: (1) the concept of money,
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(2) the concept of a legal system, (3) the concept of a national bank that is legalized to print
money and (4) the concept of cheating. A counterfeit money bill looks like an authentic
money bill. In this situation, examples and prototypes are of limited utility.

In the course of cognitive development and language acquisition, words (names)
are associated with concepts. The essence of a concept associated with a word can

be assumed to be the same within a natural language community (denotation), but
different individuals may associate different shades of meaning with a concept

(connotation), dependent on their individual existing conceptual landscape and the
differing personal emotional experiences in the acquisition of the concept.

Example: If communicating partners refer to different concepts when using a word or

if the concept behind a word is not well established in the (scientific) language community,

(i.e., does not have a well-defined denotation), then effective communication among

partners becomes difficult to impossible.

If we change the language community, the names of concepts will be changed,

although the essence of the concept, its semantic content, remains the same. The

names of concepts are thus relative to the context of discourse, while the semantic
content remains invariant.

Example: The semantic content of the concept speed is precisely defined in the realm

of physics. Different language communities give different names to the same concept: in

German Geschwindigkeit, in French vitesse, in Spanish velocidad.

2.2.2 Scientific Concepts

In the world of science, new concepts are introduced in many publications in order

to be able to express new units of thought. Often these concepts are named by a

mnemonic, leading to, what is often called, scientific jargon. In order to make an

exposition understandable, new concepts should be introduced sparingly and with

utmost care. A new scientific concept should have the following properties

[Kop08]:

l Utility. The new concept should serve a useful well-defined purpose.
l Abstraction and Refinement. The new concept should abstract from lower-level

properties of the scenario under investigation. It should be clear which properties

are not parts of the concept. In the case of refinement of a basic-level concept, it
should be clearly stated what additional aspects are considered in the refined

concept.
l Precision. The characteristic properties of the new concept must be precisely

defined.
l Identity. The new concept should have a distinct identity and should be signifi-

cantly different from other concepts in the domain.
l Stability. The new concept should be usable uniformly in many different con-

texts without any qualification or modification.
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l Analogy. If there is any concept in the existing conceptual landscape that is, in
some respects, analogous to the new concept, this similarity should be pointed

out. The analogy helps to establish links to the existing conceptual landscape of
a user and facilitates understanding. According to [Hal96, p. 5]:

Analogical reasoning mechanisms are important to virtually every area of higher

cognition, including language comprehension, reasoning and creativity. Human

reasoning appears to be based less on an application of formal laws of logic than on

memory retrieval and analogy.

The availability of a useful, well defined, and stable set of concepts and associated

terms that are generally accepted and employed by the scientific community is a

mark for the maturity of a scientific domain. An ontology is a shared taxonomy that

classifies terms in a way useful to a specific application domain in which all

participants share similar levels of understanding of the meaning of the terms

[Fis06, p. 23]. Progress in a field of science is intimately connected with concept

formation and the establishment of a well-defined ontology.

Example: The main contributions of Newton in the field of mechanics are not only in the

formulation of the laws that bear his name, but also in the isolation and conceptualization of

the abstract notions power, mass, acceleration and energy out of an unstructured reality.

Clear concept formation is an essential prerequisite for any formal analysis or

formal verification of a given scenario. The mere replacement of fuzzy concepts

by formal symbols will not improve the understanding.

2.2.3 The Concept of a Message

We consider a message as a basic concept in the realm of communication.

A message is an atomic unit that captures the value domain and the temporal

domain of a unidirectional information transport at a level of abstraction that is

applicable in many diverse scenarios of human communication [Bou61] and

machine communication. A basic message transport service (BMTS) transports a

message from a sender to one or a set of receivers. The BMTS can be realized by

different means, e.g., biological or electrical.

For example, the message concept can be used to express the information flow

from the human sensory system to the conceptual landscape of an individual. The

message concept can also model the indirect high-level interactions of a human

with his environment that are based on the use of language.

Example: We can model the sensory perception, e.g. of temperature, by saying that a

message containing the sensed variable (temperature) is sent to the conceptual landscape.
A message could also contain verbal information about the temperature at a location that is

outside the realm of direct sensory experience.

The message concept is also a basic concept in the domain of distributed embedded

computer systems at the architecture level. If the BMTS between encapsulated sub-

systems is based on unidirectional temporally predictable multicast messages, then
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the data aspect, the timing aspect, the synchronization aspect, and the publication

aspect are integrated in a singlemechanism. The BMTS can be refined at a lower level

of abstraction by explaining the transport mechanism. The transport mechanism could

be wired or wireless. The information can be coded by different signals. These

refinements are relevant when studying the implementation of the message mecha-

nism at the physical level, but are irrelevant at a level where the only concern is the

timely arrival of the information sent by one partner to another partner.

A protocol is an abstraction over a sequence of rule-based message exchanges

between communicating partners. A protocol can provide additional services, such

as flow control or error detection. A protocol can be understood by breaking it down

to the involved messages without the need to elaborate on the concrete transport

mechanisms that are used.

2.2.4 Semantic Content of a Variable

The concept of a variable, a fundamental concept in the domain of computing, is of

such importance for the rest of the book that it justifies some special elaboration.

A variable can be considered as a language construct that assigns an attribute to a

concept. If the point in real-time, the instant, when this assignment is valid, is of

relevance, then we call the variable a state variable. As time progresses, the

attribute of a state variable may change, while the concept remains the same.

A variable thus consists of two parts, a fixed part, the variable name (or the

identifier), and a variable part called the value of the variable that is assigned to

the variable. The variable name designates the concept that determines what we are
talking about. In a given context, the variable name – which is analogous to the

name of a concept in a natural language community – must be unique and point to

the same concept at all communicating partners. The meaning that is conveyed by a

variable is called the semantic content of the variable. As we will show in the latter

part of this section, the semantic content of a variable is invariant to a change in

representation. The requirement of semantic precision demands that the concept

that is associated with a variable name and the domain of values of the variable are

unambiguously defined in the model of the given application.

Example: Consider the variable name engine-temperature that is used in an automotive

application. This concept is too abstract to be meaningful to an automotive engineer, since

there are different temperatures in an automotive engine: the temperature of the oil, the

temperature of the water, or the temperature in the combustion chamber of the engine.

The unambiguous definition of a concept does not only relate to the meaning of the

concept associated with the variable, but also to the specification of the domain of
values of the variable. In many computer languages, the type of a variable, which is
introduced as an attribute of the variable name, specifies primitive attributes of the

value domain of the variable. These primitive attributes, like integer or floating
point number, are often not sufficient to properly describe all relevant attributes of

the value domain. An extension of the type system will alleviate the problem.
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Example: If we declare the value domain of the variable temperature to be floating point
we still have not specified whether the temperature is measured in units of Celsius, Kelvin
or Fahrenheit.

Example: The Mars Climate Orbiter crash occurred because the ground-based software

used different system units than the flight software. The first of the recommendations in the

report of the mishap investigation board was that theMPL (Mars Polar Lander) project verify
the consistent use of units throughout the MPL spacecraft design and operation [NAS99].

In different language communities, different variable names may be used to point to

the same concept. For example, in an English speaking language community the
temperature of the air may be abbreviated by t-air, while a German speaking

community may call it t-luft. If we change the representation of the value domain

of a variable, e.g., if we replace the units for measuring the temperature from

Celsius to Fahrenheit and adapt the value of the variable accordingly, the semantic
content expressed by the variable remains the same.

Example: On the surface the two variables t-air ¼ 86 and t-luft ¼ 30 are completely

different since they have different names and different values. If, however, t-air and t-luft
refer to the same concept, i.e., the temperature of the air, and the value of t-air is expressed
in degrees Fahrenheit and that of t-luft in degrees Celsius, then it becomes evident that the

semantic contents of these two variables are the same.

These differences in the representations of the semantic content of a variable

become important when we look at gateway components which link two sub-

systems of a system of systems that have been developed by two different organi-

zations according to two different architectural styles. The term architectural style
refers to all explicit and implicit principles, rules and conventions that are followed
by an organization in the design of a system, e.g., the representation of data,

protocols, syntax, naming, and semantics, etc.. The gateway component must

translate the variable names and representations from one architectural style to

the other architectural style, while keeping the semantic content invariant.
Data that describe the properties of (object) data is sometimes called meta-

data. In our model of a variable, data that describes the properties of the fixed
parts of a variable ismeta data, while the variable part of a variable, the value set,
is (object) data. Meta data thus describes the properties of the concept that is

referred to by the variable name. Since meta data can become object data of

another level, the distinction between data and meta data is relative to the

viewpoint of the observer.

Example: The price of a product is data, while the currency used to denote the price, the

time interval and the location where this price is applicable are meta data.

2.3 The Essence of Model Building

Given the rather limited cognitive capabilities of the rational subsystem of the

human mind we can only develop a rational understanding of the world around us

if we build simple models of those properties that are of relevance and interest to
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us and disregard (abstract from) detail that proves to be irrelevant for the given

purpose. A model is thus a deliberate simplification of reality with the objective
of explaining a chosen property of reality that is relevant for a particular
purpose.

Example: The purpose of a model in Celestial Mechanics is the explanation of

the movements of the heavenly bodies in the universe. For this purpose it makes

sense to introduce the abstract concept of a mass point and to reduce the whole diversity

of the world to a single mass point in space in order that the interactions with other

mass points (heavenly bodies) can be studied without any distraction by unnecessary

detail.

When a new level of abstraction (a new model) is introduced that successfully

conceptualizes the properties relevant for the given purpose and disregards the rest,

simplicity emerges. Such simplicity, made possible by the formation of proper

concepts, give rise to new insights that are at the roots of the laws of nature.
As Popper [Pop68] points out, due to the inherent imperfection of the abstraction
and induction process, laws of nature can only be falsified, but never be proven to

be absolutely correct.

2.3.1 Purpose and Viewpoint

At the start of any modeling activity, a clear purpose of the model must be

established. Formulating the precise questions the model must address helps to

concretize the purpose of the model. If the purpose of a model is not crystal clear, or

if there are multiple divergent purposes to satisfy, then it is not possible to develop

a simple model.

Example: The purpose of amodel of behavior of a real-time computer system is to provide

answers to the question at what points in real-time will the computer system produce what
kind of outputs. If our computer system is a System-on-Chip (SoC) with a billion transistors,
then we must find a hierarchy of behavioral models to meet our purpose.

The recursive application of the principles of abstraction leads to such a hierarchy of
models that Hayakawa [Hay90] calls the abstraction ladder. Starting with basic-level
concepts that are essential for understanding a domain, more general concepts can be

formed by abstraction and more concrete concepts can be formed by refinement.
At the lowest level of the abstraction ladder are the direct sensory experiences.

Example: The Four Universe Model of Avizienis [Avi82] introduces a hierarchy of

models in order to simplify the description of the behavior of a computer system. At the

lowest level of the hierarchy, the physical level, the analog signals of the circuits are

observed, such as the rise time of the voltages as a transistor performs a switching opera-

tion. The analysis of a circuit behavior at the physical (analog) level becomes difficult as

soon as more and more transistors get involved (emerging complexity). The next higher

level, the digital logic level, abstracts from the physical analog quantities and the dense

time and introduces binary logic values (high or low) of signals at discrete instants,

resulting in a much simpler representation of the behavior of an elementary circuit, e.g.

an AND gate (emerging simplicity). Complexity creeps in again as we combine more and
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more logic circuits. The next higher level, the information level, lumps a (possible large)

sequence of binary values into a meaningful data structure, (e.g., a pointer, a real-valued

variable or a complete picture) and introduces powerful high-level operations on these data

structures. Finally, at the external level, only the services of the computer system to the

environment, as seen by an outside user, are of relevance.

A posed question about a distinct property of a real system gives rise to the

construction of a hierarchy of models of that system that are intended to answer

the posed question. Figure 2.1 depicts two hierarchies of models that are introduced

to serve two purposes, purpose A and purpose B. Purpose A could refer to a

hierarchy of behavioral models, while purpose B could refer to a hierarchy of

dependability models of the same real system. At the top of each hierarchy is the

stated purpose. i.e., the questions that must be answered. The different levels of the

hierarchy – the abstraction levels – are introduced to support a stepwise refinement

of the stated question considering more detail, where each step takes consideration

of the limited cognitive capabilities of the human mind. At the low end of the

hierarchy is the real system. The analysis is substantially simplified if the structure

of the model corresponds with the structure of the system. Otherwise we have to

resolve a structure clash that complicates the issues.

Example: The model for predicting the temporal properties of the behavior of a real-time

computer system is straightforward if there is a predictable sequence of computational and

communication actions between the start of a computation and the termination of a

computation. Conversely, if the actual durations of the computational and communication

actions depend on global system activity (e.g., arbitration for access to shared resources

such as caches, communication links, etc.) then it will not be possible to construct a simple
model for predicting the temporal properties of the behavior.

2.3.2 The Grand Challenge

Whereas the natural scientist must uncover the regularities in a given reality and find

appropriate concepts at a suitable level of abstraction in order to formulate models

and theories that explain the observed phenomena, the computer scientist is – at least
theoretically – in a much better position: The computer scientist has the freedom to

design the system – an artifact – which is the subject of his modeling. The

requirement to build artifacts, the properties of which can be analyzed by simple
models, should thus be an explicit design driver. In many areas of computer science

this principle of building artifacts that can be modeled by simple models is violated.

purpose A

abstraction
level A1

purpose B

abstraction
level A2 real system

   abstraction
level B1

   abstraction
level B2

Fig. 2.1 Purpose and

abstraction level of a model
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For example, the temporal behavior of a modern pipelined microprocessor with

multiple caches cannot be captured in a simple model.
The major challenge of design is the building of a software/hardware artifact (an

embedded computer system) that provides the intended behavior (i.e. the service)
under given constraints and where relevant properties of this artifact (e.g., the
behavior) can be modeled at different levels of abstraction by models of adequate
simplicity.

As stated before, there are many different purposes that give rise to a hierarchy

of models of an artifact. Examples are: behavior, reliability, man–machine interac-

tion, energy consumption, physical dimension, cost of manufacturing, or cost of

maintenance, to name a few. Out of these, the most important one is the model of
behavior. In the context of real-time systems, behavior specifies the output actions

of a computer system as a consequence of the inputs, the state and the progression

of real-time. Output actions and input can be captured in the concepts of input
messages and output messages. In Chap. 4 of this book we present a cross-domain

model for the behavior of a real-time computer system using these concepts.

2.4 Emergence

We speak of emergence when the interactions of subsystems give rise to unique

global properties at the system level that are not present at the level of the

subsystems [Mor07]. Non-linear behavior of the subsystems, feedback and feed

forward mechanisms, and time delays are of relevance for the appearance of

emergent properties. Up to now, the phenomenon of emergence is not fully

understood and a topic of intense study.

2.4.1 Irreducibility

Emergent properties are irreducible, holistic, and novel – they disappear when the

system is partitioned into its subsystem. Emergent properties can appear unexpect-

edly or they are planned. In many situations, the first appearance of the emergent

properties is unforeseen and unpredictable. Often a fundamental revision of

state-of-the-art models is required to get a better understanding of the conditions

that lead to the intended emergence. In some cases, the emergent properties can be

captured in a new conceptualization (model) at a higher level of abstraction result-

ing in an abrupt simplification of the scenario.

Example: The emergent properties of a diamond, such as brilliance and hardness, which
are caused by the coherent alignment of the Carbon-atoms, are substantially different from

the properties of graphite (which consists of the same atoms). We can consider the diamond

with its characteristic properties a new concept, a new unit of thought, and forget about its

composition and internal structure. Simplicity comes out as a result of the intricate interac-

tions among the elements that help to generate a newwholewith its new emergent properties.
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2.4.2 Prior and Derived Properties

When dealing with emergence, it is helpful to distinguish between the prior
properties of the components and the new derived properties that come about by

the interactions of the components.

Example: The high reliability of the services of a fault-tolerant system (derived property)
that is the result of the interactions of many unreliable components (prior property) is an
emergent property.

In many cases the prior properties and the derived properties can be of a completely

different kind. It often happens that the derived properties open a completely new

domain of science and engineering. This new domain requires the formation of

novel concepts that capture essential properties of this new domain.

Example: The property of being able to flywhich comes about by the proper interaction of

the subsystems of an airplane, such as the wings, the fuselage, the engines and the controls,

is only present in the airplane as a whole but not in any of the isolated subsystems. Being
able to fly has opened the domain of the air transportation industry with its own rules and

regulations. For example, the subject of air traffic control is far removed from the prior

properties of the components that make up an airplane.

Prior properties and derived properties are relative to the viewpoint of the observer.

When climbing up the abstraction ladder, the derived properties at one level of

abstraction become the prior properties at the next higher level of abstraction and so

on, since a new form of emergence can appear at higher levels.

Example: In the evolution of the universe two very significant stages of emergence are the

appearance of life and at a further stage the appearance of consciousness that forms the basis

for the development of human culture. The realm of human culture has developed its own

system of concepts in the arts, sciences etc., that are far removed from the biological prior

properties that are characterizing the human brain.

Emergent behavior cannot be predicted analytically, but must be detected in an
operating system. Thus control elements must incorporate hooks for monitoring
system performance in real time [Par97, p. 7]. The multicast message concept,

discussed in Sect. 2.2.3 provides the basis for the nonintrusive observation of

system behavior.

2.4.3 Complex Systems

Weclassify a system as complex if we are not in the position to develop a set ofmodels

of adequate simplicity – commensurate to the rational capabilities of the human

mind – to explain the structure and behavior of the system. In addition to life and

consciousness, examples for complex systems are the earth’s climate and weather, the

global economy, living organisms, and many large computer systems, to name a few.

We hold the opinion that a fundamental understanding of a complex system can

only be achieved by a proper conceptualization and not by the execution of
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elaborate computer simulations. This view is also shared by Mesarovic et al.

[Mes04, p.19] when he speaks about biology:

We further argue that for a deeper understanding in systems biology investigations should

go beyond building numerical mathematical or computer models – important as they are

. . .. Such a categorical perspective led us to propose that the core of understanding in

systems biology depends on the search for organizing principles rather than solely on

construction of predictive descriptions (i.e. models) that exactly outline the evolution of

systems in space and time. The search for organizing principles requires an identification/

discovery of new concepts and hypotheses.

Maybe, sometimes in the future, we will form appropriate concepts that will lead to

an abrupt simplification of some of today’s complex systems. If this happens, the

system will not be classified as complex any more.

Whereas system biology deals with a natural system, a large computer system is

an artifact developed by humans. When designing such an artifact, we should take

consideration of the limited rational problem solving capability of humans in order

that we can describe the behavior of the artifact by models of adequate simplicity.

These models should guide the design process, such that a structure clash between

the model and the artifact is avoided.

Example: Let us look at the technical example of designing the on-chip communication

infrastructure for the communication among IP-cores on a system-on-chip. There are

basically two technical alternatives, the provision of a shared memory that can be accessed
by all IP-cores or the provision of local memory to each one of the IP-cores and the design
of a message-passing subsystem that enables the exchange of messages among IP-cores

[Pol07,Lev08]. The message-passing subsystem isolates and makes explicit the global

communication among subsystems and thus supports the introduction of a new level in

the hierarchy where a distinction is made between the intra-IP core interactions and the

inter-IP core interactions. The common memory intermixes global intra-IP-core and local

inter-IP-core interactions and makes it very difficult to separate global and local concerns,

leading to a more complex system model.

2.5 How Can We Achieve Simplicity?

Cognitive scientists have studied how students learn and understand different tasks

[Fel04]. They have identified a set of task characteristics that require a disproportional

mental effort for understanding the task. Table 2.2 compares the characteristics of

simple tasks versus difficult tasks. We thus need to design a generic model for

expressing the behavior of an embedded system that avoids the characteristics of

difficult tasks. It should be possible to apply the model recursively, such that large

systems can be modeled at different levels of abstraction using the same modeling

mechanisms.

The model of a real-time system, presented in Chap. 4, tries to reach this goal.

Simplicity is achieved by adhering to the following seven design principles:

1. Principle of Abstraction. The introduction of a component (a hardware/soft-

ware unit) as a basic structural and computational unit makes it possible to use
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the component on the basis of its precise interface specifications without any

need to understand the internals of the component operation. In order to maintain

the abstraction of a component even in the case that faults are occurring, a

component should be a fault-containment unit (Sect. 6.1.1). If components stand

in a hierarchical relationship to each other, different levels of abstraction can be
distinguished. At a high level of abstraction, the behavior of a complete autono-

mous constituent system (consisting of many clusters of components) of a

system-of-systems (SoS) is captured in the precise linking interface specification

of its gateway component (see Sects. 4.6 and 4.7.3).

2. Principle of Separation of Concerns. This principle helps to build simple

systems by disentangling functions that are separable in order that they can be

grouped in self-contained architectural units, thus generating stable intermediate
forms [Sim81]. This principle is sometimes called principle of partitioning
[Ses08]. An example is the strict separation of computational activities from

communication activities such that the communication system and the compu-

tational components can be developed independently (Sect. 4.1.1).

3. Principle of Causality. The analytical-rational problem solving subsystem of

humans excels in reasoning along causal chains. The deterministic behavior of
basic mechanisms makes it possible that a causal chain between a cause and the

consequent effect can be established without a doubt (Sect. 5.6).

Table 2.2 Characteristics of simple versus difficult tasks (Adapted from [Fel04, p. 91])

Characteristics of a simple task Characteristics of a difficult task

Static: The properties of the task do not change

over time.

Dynamic: The properties of the task are time

dependant.

Discrete: The variables that characterize the

task can only take values from discrete sets.

Continuous: The domain of the variables is

continuous.

Separable: Different subtasks are nearly

independent. There is only a weak

interaction among tasks.

Non-separable: Different subtasks are highly

interactive. It is difficult to isolate the

behavior of a single task.

Sequential: Behavior can be understood by a

sequential step-by-step analysis.

Simultaneous: Many concurrent processes

interact in generating visible behavior. Step-

by-step analysis is difficult.

Homogeneous: Components, explanatory

schemes, and representations are alike.

Heterogeneous: Many different components,

explanatory schemes, and representations.

Mechanism: Cause and effect relations

dominate.

Organicism: Behavior characterized by a

multitude of feedback mechanisms.

Linear: Functional relationships are linear. Non-linear: Functional relationships are non-

linear.

Universal: Explanatory principles do not

depend on context.

Conditional: Explanatory principles are context

dependent.

Regular: Domain characterized by a high

regularity of principles and rules.

Irregular: Many different context dependent

rules.

Surface: Important principles and rules are

apparent by looking at observable surface

properties.

Deep: Important principles are covert and

abstract and not detectable when looking at

surface properties.
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4. Principle of Segmentation. This principle suggests that hard-to-understand behav-
ior shouldbedecomposed,wherever possible, into a serial behavioral structure such

that a sequential step-by-step analysis of the behavior becomes possible. Each step

requires only the investigation of the limited context that is of relevance at this step.

5. Principle of Independence. This principle suggests that the interdependence of

architectural units (components or clusters, see Sect. 1.1) should be reduced to

the necessary minimum that is required by the application. An example is the

provision of a single unidirectional primitive for the communication among

components such that any low-level dependency of the sender of a message on

the correct operation of the receiver is eliminated by design. This principle is of

paramount importance in the design of fault-tolerant systems to ensure that

back-propagation of failures is avoided and the independence of failures of

fault-containment units can be assumed (Sect. 6.4).

6. Principle of Observability. Non-visible communication channels among archi-

tectural units pose a severe impediment for the understanding of system behav-

ior. This can be avoided by supporting a multicast topology in the basic message

passing primitive. It is then possible to observe the external behavior of any

component without a probe effect (Sect. 12.2).
7. Principle of a Consistent Time. The progression of real-time is an important

independent variable in any behavioral model of the physical subsystem of an

embedded system. This principle suggests that a global time base should be intro-
duced in thedistributedcomputer systemsuch that system-wide consistent temporal

relations (e.g., simultaneity) and temporal distances among events can be estab-

lishedon thebasis ofglobal time-stamps (Sect. 3.3).Theavailabilityof aglobal time

simplifies the solution of many problems in distributed systems (see Sect. 14.2.1).

Points to Remember

l Humans have two quite different mental subsystems for solving problems: the

intuitive-experiential subsystem and the analytic-rational subsystem.
l The experiential subsystem is a preconscious emotionally-based subsystem that

operates holistically, automatically, and rapidly, and demands minimal cogni-

tive resources for its execution.
l The rational subsystem is a conscious analytic subsystem that operates according to

the laws of logic. It is well equipped to handle deterministic relations and causality.
l Adult humans have a conscious explicit model of reality in their rational

subsystem, in addition to their implicit model of reality in the experiential

subsystem. These two models of reality coincide to different degrees and form

jointly the conceptual landscape of an individual.
l Knowledge is acquired by the process of abstraction, by which the particular is

subordinated to the general, so that what is known about the general is applicable

to many particulars.
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l A concept is a category that is augmented by a set of beliefs about its relations
to other categories. The set of beliefs relates a new concept to already existing
concepts and provides for an implicit theory (a subjective mental model).

l Understanding means that the concepts and relationships that are employed in

the representation of a scenario have been adequately linked with the conceptual

landscape and the methods of reasoning of the observer. The tighter the links are,
the better is the understanding. Understanding (and therefore simplicity) is thus
a relation between an observer and a scenario, not a property of the scenario.

l The elapsed time needed to understand a model by an intended observer is a

reasonable measure for the cognitive effort and thus for the complexity of a

model relative to the observer.
l Complexity can only be assigned to models of physical systems, but not to the

physical systems themselves, no matter whether these physical systems are

natural or man made.
l The complexity of a large system depends on the number and complexity of the

models that must be comprehended in order to understand the complete system.

The time it takes to understand all these models can be considered as a measure

for the cognitive complexity of a large system.
l Invisible information flows between identified subsystems pose a considerable

barrier for understanding.
l The resources in the rational problem solving subsystem of humans, both in

storage and processing capacity, are limited.
l The four strategies to simplify a complex scenario in order that it can be

processed by the limited cognitive capabilities of humans are abstraction,
partitioning, isolation, and segmentation.

l The formation of concepts is governed by the following two principles the

principle of utility and the principle of parsimony (also called Occam’s razor).
l The essence of a concept, i.e., the semantic content of a concept, associated with

a name, can be assumed to be the same within a natural language community

(denotation), but different individuals may associate different shades of meaning
with a concept (connotation).

l A variable is a language construct that assigns an attribute to a concept at the
given instant. A variable thus consists of two parts, a fixed part, the variable
name, and a variable part called the value of the variable that is assigned to the

variable at a particular instant.
l Differences in the representations of the semantic content of a variable become

important when we look at gateway components which link two subsystems that

have been developed by two different organizations according to two different

architectural styles.
l Amodel is a deliberate simplification of reality with the objective of explaining a

chosen property of reality that is relevant for a particular purpose.
l If the purpose of a model is not crystal clear, or if there are multiple divergent

purposes to satisfy, it is not possible to develop a simple model.
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l The recursive application of the principles of abstraction leads to such a hierarchy
of models. More general models can be formed by abstraction and more concrete

models can be formed by refinement.
l The major challenge of design is the building of a software/hardware artifact

(an embedded computer system) that provides the intended behavior (i.e. the

service) under given constraints and where relevant properties of this artifact

(e.g., the behavior) can be modeled at different levels of abstraction by models of

adequate simplicity.
l We talk about emergence when the interactions of subsystems give rise to

unique global properties at the system level that are not present at the level of

the subsystems. Emergent properties are irreducible, holistic, and novel – they

disappear when the system is partitioned into its subsystems.
l We classify a system as complex if we are not in the position to develop a set of

models of adequate simplicity – commensurate to the rational capabilities of the

human mind – to explain the structure and behavior of the system.
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Review Questions and Problems

2.1 What are the distinguishing characteristics of the intuitive-experiential and
the analytic-rational subsystems for human problem solving?

2.2 Give concrete examples for typical tasks for the intuitive-experiential and the
analytic-rational problem solving subsystems!
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2.3 How is a concept defined? What are the principles that guide concept
formation? What is the conceptual landscape? What are basic level concepts?

2.4 What is characteristic for a domain expert?
2.5 What do we mean when we say we understand a scenario? How is cognitive

complexity defined? Give an example of a barrier to understanding!
2.6 Which are known simplification strategies?
2.7 What are the characteristics of scientific concepts?

2.8 What is the concept of a message? What is a protocol?
2.9 What is the semantic content of a variable? What is the relationship between

the representation of a variable and its semantic content?
2.10 What is the essence of model building?

2.11 Explain the four-universe model of a computer system!

2.12 What makes a task simple or complex?
2.13 What do we mean by emergence? What are prior and derivative properties?
2.14 What are the advantages and disadvantages of message-based inter IP-core

communication on an MP-SoC (Multiprocessor system on chip)?
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Chapter 3

Global Time

Overview This chapter starts with a general discussion on time and order. The

notions of causal order, temporal order, and delivery order and their interrelation-

ships are elaborated. The parameters that characterize the behavior and the quality

of a digital clock are investigated. Section 3.2 proceeds along the positivist tradition

by introducing an omniscient external observer with an absolute reference clock

that can generate precise time-stamps for all relevant events. These absolute time-

stamps are used to reason about the precision and accuracy of a global time base,

and to expose the fundamental limits of time measurement in a distributed real-time

system.

In Sect. 3.3, the model of a sparse time base is introduced to establish a consistent
view of the order of computer-generated events in a distributed real-time system

without having to execute an agreement protocol. The cyclic model of time presented
in this section is well suited to deal with the progression of time in cyclic systems,

such as in many control and multimedia systems.

The topic of internal clock synchronization is covered in Sect. 3.4. First, the

notions of convergence function and drift offset are introduced to express the

synchronization condition that must be satisfied by any synchronization algorithm.

Then, the simple central-master algorithm for clock synchronization is presented,

and the precision of this algorithm is analyzed. Section 3.4.3 deals with the more

complex issue of fault-tolerant distributed clock synchronization. The jitter of the

communication system is a major limiting factor that determines the precision of

the global time base.

The topic of external synchronization is studied in Sect. 3.5. The role of a time

gateway and the problem of faults in external synchronization are discussed.

Finally, the network time protocol (NTP) of the Internet, the time format of the

IEEE 1588 clock synchronization protocol, and the time format of the TTA are

presented.

H. Kopetz, Real-Time Systems: Design Principles for Distributed Embedded Applications,
Real-Time Systems Series, DOI 10.1007/978-1-4419-8237-7_3,
# Springer Science+Business Media, LLC 2011
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3.1 Time and Order

Applying the principles of utility and parsimony (Sect. 2.2.1), we base our model of

time onNewtonian physics, because themodels ofNewtonian physics are simpler than

themodels of relativistic physics and sufficient to deal withmost temporal phenomena

in embedded systems. In many engineering disciplines (e.g., Newtonian mechanics),

time is introduced as an independent variable that determines the sequence of states of

a system. The basic constants of physics are defined in relation to the standard of time,

the physical second. This is why the global time base in a cyber-physical real-time

system should be based on the metric of the physical second.

In a typical real-time application, the distributed computer system performs a

multitude of different functions concurrently, e.g., the monitoring of real-time (RT)

entities (both their value and rate of change), the detection of alarm conditions, the

display of the observations to the operator, and the execution of control algorithms

to find new set-points for many distinct control loops. These diverse functions are

normally executed at different nodes. In addition, replicated nodes are introduced to

provide fault tolerance by active redundancy. To guarantee a consistent behavior of

the entire distributed system, it must be ensured that all nodes process all events in

the same consistent order, preferably in the same temporal order in which the events

occurred (see also the example in Sect. 5.5) in the controlled object. A proper global

time base helps to establish such a consistent temporal order on the basis of the

time-stamps of the events.

3.1.1 Different Orders

Temporal Order. The continuum of Newtonian real time can be modeled by a

directed timeline consisting of an infinite set {T} of instants (or points in time) with
the following properties [Wit90, p. 208]:

1. {T} is an ordered set, that is, if p and q are any two instants, then either p is

simultaneous with q, or p precedes q, or q precedes p, where these relations are
mutually exclusive. We call the order of instants on the timeline the temporal
order.

2. {T} is a dense set. This means that there is at least one q between p and r iff p is
not the same instant as r, where p, q, and r are instants.

A section of the time line between two different instants is called a duration. In our
model, an event takes place at an instant of time and does not have a duration. If two

events occur at the same instant, then the two events are said to occur simulta-
neously. Instants are totally ordered; however, events are only partially ordered,

since simultaneous events are not in the order relation. Events can be totally ordered

if another criterion is introduced to order events that occur simultaneously, e.g., in a

distributed computer system, the number of the node at which the event occurred can

be used to order events that occur simultaneously [Lam78].
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Causal Order. In many real-time applications, the causal dependencies among

events are of interest. The computer system must assist the operator in identifying

the primary event of an alarm shower (see Sect. 1.2.1). Knowledge of the exact

temporal order of the events is helpful in identifying this primary event. If an event

e1 occurs after an event e2, then e1 cannot be the cause of e2. If, however, e1 occurs
before e2, then it is possible, but not certain, that e1 is the cause of e2. The temporal
order of two events is necessary, but not sufficient, for their causal order. Causal
order is more than temporal order.

Reichenbach [Rei57, p. 145] defined causality by a mark method without

reference to time: If event e1 is a cause of event e2, then a small variation

(a mark) in e1 is associated with small variation in e2, whereas small variations

in e2 are not necessarily associated with small variations in e1.

Example: Suppose there are two events e1 and e2:
e1 Somebody enters a room.

e2 The telephone starts to ring.

Consider the following two cases

1. e2 occurs after e1.
2. e1 occurs after e2.

In both cases the two events are temporally ordered. However, while it is unlikely that there

is a causal order between the two events of case (1), it is likely that such a causal order

exists between the two events of case (2), since the person might enter the room to answer

the telephone.

If the (partial) temporal order between alarm events has been established, it is

possible to exclude an event from being the primary event if it definitely occurred
later than another alarm event. Subsequently, we will show that a precise global

time base helps to determine the event set that is in this definitely-occurred-later-
than relation (see also the example in Sect. 1.2.1).

Delivery Order. A weaker order relation that is often provided by distributed

communication systems is a consistent delivery order. The communication

system guarantees that all nodes see a defined set of related events in the

same delivery order. This delivery order is not necessarily related to the

temporal order of event occurrences or the causal relationship between events.

Some distributed algorithms, e.g., atomic broadcast algorithms require a con-

sistent delivery order.

3.1.2 Clocks

In ancient history, the measurement of durations between events was mainly based

on subjective judgment. With the advent of modern science, objective methods for

measuring the progression of time by using physical clocks have been devised.

Digital Physical Clock. A (digital physical) clock is a device for measuring time. It

contains a counter and a physical oscillation mechanism that periodically generates
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an event to increase the counter. The periodic event is called the microtick of the

clock. (The term tick is introduced in Sect. 3.2.1 to denote the events generated by

the global time).

Granularity. The duration between two consecutive microticks of a digital physical

clock is called a granule of the clock. The granularity of a given clock can be

measured only if there is a clock with a finer granularity available. The granularity

of any digital clock leads to a digitalization error in time measurement.

There also exist analog physical clocks, e.g., sundials that do not have granular-
ity. In the following, we only consider digital physical clocks.

In subsequent definitions, we use the following notation: clocks are identified by

natural numbers 1, 2, . . ., n. If we express properties of clocks, the property is

identified by the clock number as a superscript with the microtick or tick number as

a subscript. For example, microtick i of clock k is denoted by microtickki .

Reference Clock. Assume an omniscient external observer who can observe all

events that are of interest in a given context (remember that relativistic effects are

disregarded). This observer possesses a unique reference clock z with frequency f z,
which is in perfect agreement with the international standard of time. The counter of

the reference clock is always the same as that of the international time standard. We

call 1/f z the granularity gz of clock z. Let us assume that f z is very large, say

1015 microticks/s, so that the granularity gz is 1 fs (10�15 s). Since the granularity of

the reference clock is so small, the digitalization error of the reference clock is

considered a second order effect and disregarded in the following analysis.

Absolute Time-Stamp. Whenever the omniscient observer perceives the occurrence

of an event e, she/he will instantaneously record the current state of the reference

clock as the time of occurrence of this event e, and, will generate a time-stamp for e.
Clock(e) denotes the time-stamp generated by the use of a given clock to time-

stamp an event e. Because z is the single reference clock in the system, z(e) is called
the absolute time-stamp of the event e.

The duration between two events is measured by counting the microticks of the

reference clock that occur in the interval between these two events. The granular-
ity gk of a given clock k can now be measured and is given by the nominal number

nk of microticks of the reference clock z between 2 microticks of this clock k.
The temporal order of events that occur between any two consecutive microticks

of the reference clock, i.e., within the granularity gz, cannot be reestablished from

their absolute time-stamps. This is a fundamental limit in time measurement.

Clock Drift. The drift of a physical clock k between microtick i and microtick i + 1

is the frequency ratio between this clock k and the reference clock, at the instant of

microtick i. The drift is determined by measuring the duration of a granule of clock

k with the reference clock z and dividing it by the nominal number nk of reference
clock microticks in a granule:

driftki ¼
zðmicrotickkiþ1Þ � zðmicrotickki Þ

nk
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Because a good clock has a drift that is very close to 1, for notational convenience

the notion of a drift rate rki is introduced as

rki ¼
zðmicrotickkiþ1Þ � zðmicrotickki Þ

nk
� 1

����
����:

A perfect clock will have a drift rate of 0. Real clocks have a varying drift rate that is

influenced by environmental conditions, e.g., a change in the ambient temperature, a

change in the voltage level that is applied to a crystal oscillator, or aging of the crystal.

Within specified environmental parameters, the drift rate of an oscillator is bounded by

the maximum drift rate rkmax, which is documented in the data sheet of the resonator.

Typicalmaximumdrift ratesrkmax are in the rangeof 10
�2 to 10�7 s/s, or better, depending

on the quality (and price) of the oscillator. Because every clock has a non-zero drift

rate, free-running clocks, i.e., clocks that are never resynchronized, leave any bounded

relative time interval after a finite time, even if they are fully synchronized at startup.

Example: During the Gulf war on February 25, 1991, a Patriot missile defense system failed

to intercept an incoming Scud rocket. The clock drift over a 100-h period (which resulted in a

tracking error of 678 m) was blamed for the Patriot missing the Scud missile that hit an

American military barracks in Dhahran, killing 29 and injuring 97. The original requirement

was a 14-h mission. The clock drift during a 14-h mission could be handled [Neu95, p. 34].

Failure Modes of a Clock. A physical digital clock can exhibit two types of failures.

The counter could bemutilated by a fault so that the counter value becomes erroneous,

or the drift rate of the clock could depart from the specified drift rate (the shaded area

of Fig. 3.1) because the clock starts ticking faster (or slower) than specified.

3.1.3 Precision and Accuracy

Offset. The offset at microtick i between two clocks j and k with the same

granularity is defined as

offset jki ¼ zðmicrotick j
i Þ � zðmicrotickki Þ

��� ���
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The offset denotes the time difference between the respective microticks of the two

clocks, measured in the number of microticks of the reference clock.

Precision. Given an ensemble of n clocks {1, 2, . . ., n}, the maximum offset

between any two clocks of the ensemble

Pi ¼ max
8lbj; kbn offset jki

n o

is called the precisionPof the ensemble at microtick i. The maximum ofPi over an

interval of interest is called the precisionP of the ensemble. The precision denotes

the maximum offset of respective microticks of any two clocks of the ensemble

during a duration of interest. The precision is expressed in the number of microticks

of the reference clock.

Because of the drift rate of any physical clock, the clocks of an ensemble will

drift apart if they are not resynchronized periodically (i.e., brought closer together).

The process of mutual resynchronization of an ensemble of clocks to maintain a

bounded precision is called internal synchronization.

Accuracy. The offset of clock k with respect to the reference clock z at microtick i
is called the accuracyki . The maximum offset over all microticks i that is of interest
is called the accuracyk of clock k. The accuracy denotes the maximum offset of a

given clock from the external time reference during a duration of interest.

To keep a clock within a bounded interval of the reference clock, it must be

periodically resynchronized with an external time reference. This process of resynchro-

nization of a clock with an external time reference is called external synchronization.
If all clocks of an ensemble are externally synchronized with an accuracy A,

then the ensemble is also internally synchronized with a precision of at most 2A.
The converse is not true. An ensemble of internally synchronized clocks will drift

from the external time if the clocks are never resynchronized with the external

time base.

3.1.4 Time Standards

In the last decades, a number of different time standards have been proposed to

measure the time difference between any two events and to establish the position of

an event relative to some commonly agreed origin of a time base, the epoch. Two
of these time bases are relevant for the designer of a distributed real-time computer

system, the International Atomic Time (TAI) and the Universal Time Coordinated
(UTC).

International Atomic Time (TAI – Temps Atomique Internationale). The need

for a time standard that can be generated in a laboratory gave birth to the

International Atomic Time (TAI). TAI defines the second as the duration of

9,192,631,770 periods of the radiation of a specified transition of the cesium

56 3 Global Time



atom 133. The intention was to define the duration of the TAI second so that it

agrees with the second derived from astronomical observations. TAI is a

chronoscopic timescale, i.e., a timescale without any discontinuities (e.g., leap

seconds). The epoch of TAI starts on January 1, 1958 at 00:00 h Greenwich

Mean Time (GMT). The time base of the global positioning system GPS is

based on TAI with the epoch starting on January 6, 1980 at 00:00 h.

Universal Time Coordinated (UTC). UTC is a time standard that has been derived

from astronomical observations of the rotation of the earth relative to the sun. It is

the basis for the time on the wall-clock. However, there is a known offset between

the local wall-clock time and UTC determined by the time zone and by the political

decisions about when daylight savings time must be used. The UTC time standard

was introduced in 1972, replacing the Greenwich Mean Time (GMT) as an interna-

tional time standard. Because the rotation of the earth is not smooth, but slightly

irregular, the duration of the GMT second changes slightly over time. In 1972, it

was internationally agreed that the duration of the second should conform to the

TAI standard, and that the number of seconds in an hour would have to be modified

occasionally by inserting a leap second into the UTC to maintain synchrony

between the UTC (wall-clock time) and astronomical phenomena, like day and

night. Because of this leap second, the UTC is not a chronoscopic timescale, i.e., it

is not free of discontinuities. It was agreed that on January 1, 1958 at midnight, both

the UTC and the TAI had the same value. Since then the UTC has deviated from

TAI by about 30 s. The point in time when a leap second is inserted into the UTC is

determined by the Bureau International de l’Heure and publicly announced, so that

the current offset between the UTC and the TAI is always known.

Example: In Software Engineering Notes of March 1996 [Pet96, p. 16] was the following

story:

Ivan Peterson reported on a problem that occurred when a leap second was added at

midnight on New Year’s Eve 1995. The leap second was added, but the date

inadvertently advanced to Jan. 2. Ivars heard from a source at AP radio that the

synchronization of their broadcast networks depends on the official time signal, and

this glitch affected their operation for several hours until the problem was corrected.

You can’t even count on the national timekeepers to get it right all the time.

Bob Huey responded that making corrections at midnight is obviously risky: (1) The

day increments to January 1, 1996, 00:00:00. (2) You reset the clock to 23:59:59,

back one second. (3) The clock continues running. (4) The day changes again, and it

is suddenly January 2, 1996, 00:00:00. No wonder they had problems.

3.2 Time Measurement

If the real-time clocks of all nodes of a distributed system were perfectly synchro-

nized with the reference clock z, and all events were time-stamped with this

reference time, then it would be easy to measure the interval between any two

events or to reconstruct the temporal order of events, even if variable
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communication delays generated differing delivery orders. In a loosely coupled

distributed systemwhere every node has its own local oscillator, such a tight synchro-

nization of clocks is not possible. A weaker notion of a universal time reference, the

concept of global time, is therefore introduced into a distributed system.

3.2.1 Global Time

Suppose a set of nodes exists, each one with its own local physical clock ck that
ticks with granularity gk. Assume that all of the clocks are internally synchronized

with a precision P, i.e., for any two clocks j, k, and all microticks i

zðmicrotick j
i Þ � zðmicrotick k

i Þ
��� ���<P:

(In Sect. 3.4, methods for the internal synchronization of the clocks are presented).

It is then possible to select a subset of the microticks of each local clock k for the

generation of the local implementation of a global notion of time. We call such a

selected local microtick i a macrotick (or a tick) of the global time. For example,

every tenth microtick of a local clock k may be interpreted as the global tick, the

macrotick tki , of this clock (see Fig. 3.2). If it does not matter at which clock k the
(macro)tick occurs, we denote the tick ti without a superscript. A global time is thus

an abstract notion that is approximated by properly selected microticks from the

synchronized local physical clocks of an ensemble.

Reasonableness Condition. The global time t is called reasonable, if all local

implementations of the global time satisfy the condition

g>P

the reasonableness condition for the global granularity g. This reasonableness

condition ensures that the synchronization error is bounded to less than one macro-
granule, i.e., the duration between two (macro) ticks. If this reasonableness condi-

tion is satisfied, then for a single event e, that is observed by any two different clocks
of the ensemble,

tjðeÞ � tkðeÞ�� ��b1;
i.e., the global time-stamps for a single event can differ by at most one tick. This is
the best we can achieve. Because of the impossibility of synchronizing the clocks
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perfectly, and the granularity of any digital time there is always the possibility of

the following sequence of events: clock j ticks, event e occurs, clock k ticks. In such
a situation, the single event e is time-stamped by the two clocks j and k with a

difference of one tick (Fig. 3.2).

One Tick Difference – What Does It Mean? What can we learn about the temporal

order of two events, observed by different nodes of a distributed system with a

reasonable global time, given that the global time-stamps of these two events differ

by one tick?

In Fig. 3.3, four events are depicted, event 17, event 42, event 67 and event 69
(time-stamps from the reference clock). Although the duration between event 17
and event 42 is 25 microticks, and the duration between event 67 and event 69 is

only 2 microticks, both durations lead to the same measured difference of one

macrogranule. The global time-stamp for event 69 is smaller than the global time-

stamp for event 67, although event 69 occurred after event 67. Because of the

accumulation of the synchronization error and the digitalization error, it is not

possible to reconstruct the temporal order of two events from the knowledge that

the global time-stamps differ by one tick. However, if the time-stamps of two

events differ by two ticks, then the temporal order can be reconstructed because the

sum of the synchronization and digitalization error is always less than two granules

in a clocking system with a reasonable global time-base.

This fundamental limitation in time measurement limits the faithfulness of

the digital computer model of a controlled physical subsystem. The time-base in

the physical part of a cyber-physical system is dense, while the time base in the

computer system is discrete. Whenever two events in the physical subsystem occur

close together, compared to the granularity of the global time, it is not possible to

reconstruct the physical temporal order of the events in the computer system

faithfully. The only way out of this dilemma is the provision of a global time

base with a smaller granularity, such that temporal errors are reduced [Kop09].

3.2.2 Interval Measurement

An interval is delimited by two events, the start event of the interval and the

terminating event of the interval. The measurement of these two events relative

to each other can be affected by the synchronization error and the digitalization

error. The sum of these two errors is less than 2g because of the reasonableness
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Fig. 3.3 Temporal order of

two events with a difference

of one tick

3.2 Time Measurement 59



condition, where g is the granularity of the global time. It follows that the true

duration dtrue of an interval is bounded by

ðdobs � 2gÞ<dtrue<ðdobs þ 2gÞ
where dobs is the observed difference between the start event and the terminating

event of the interval. Figure 3.4 depicts how the observed duration of an interval of

length 25 microticks can differ, depending on which node observes the start event

and the terminating event. The global tick, assigned by an observing node to an

event delimiting the interval is marked by a small circle in Fig. 3.4.

3.2.3 p/D-Precedence

Consider a distributed computer system that consists of three nodes j, k, and m that

support a global time. Every node is to generate an event at its view of the global

instants 1, 5, and 9. An omniscient outside observer will see the scenario depicted

in Fig. 3.5.

All events that are generated locally at the same global clock tick will occur

within a small interval p, where p � P, the precision of the ensemble (because of

the reasonableness condition). Events that occur at different ticks will be at least

D apart (Fig. 3.5). The outside observer should not order the events that occur

within p, because these events are supposed to occur at the same instant. Events

that occur at different ticks should be ordered. How many granules of silence

must exist between the event subsets such that an outside observer or another

cluster will always recover the temporal order intended by the sending cluster?

Before we can answer this question (in Sect. 3.3.2) we must introduce the notion

of p/D precedence.
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Given a set of events {E} and two durations p andDwhere p<<D, such that for
any two elements ei and ej of this set, the following condition holds:

½ zðeiÞ � zðejÞ
�� ��bp� v ½ zðeiÞ � zðejÞ

�� ��>D�

where z is the reference clock. Such an event set is called p/D-precedent. p/D-
precedence means that a subset of the events that happen at about the same time

(and that are therefore close together within p) is separated by a substantial interval
(at least D) from the elements in another subset. If p is zero, then any two events of

the 0/D-precedent event set occur either at the same instant or are at least a duration

D apart.

Assume a distributed system with a reasonable global time base with granularity

g and two events, e1 and e2, that are produced at the same locally generated global

tick of two different nodes. Due to the synchronization error, these events can differ

by up to but less than one granule. These events are observed by some of the

other nodes.

Because of the synchronization and digitalization error, the two (simultaneous

by intention) events can be time-stamped by the observers with two ticks differ-

ence. In order to be able to establish the intended temporal order of events from

their time-stamps a sufficient duration of silence is needed before the next event

may occur in order to ensure that the intended simultaneity of the events can always

be recovered by all observers [Ver94].

3.2.4 Fundamental Limits of Time Measurement

The above analysis leads to the following four fundamental limits of time measure-

ment in distributed real-time systems with a reasonable global time base with

granularity g.

1. If a single event is observed by two different nodes, there is always the

possibility that the time-stamps differ by one tick. A one-tick difference in the

time-stamps of two events is not sufficient to reestablish the temporal order of

the events from their time-stamps.

respective macro-
ticks of clocks j, k 
and m are connec-
ted by dotted lines

reference
clock z

clock j

clock k

clock m
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Fig. 3.5 p/D precedence

3.2 Time Measurement 61



2. If the observed duration of an interval is dobs, then the true duration dtrue is

bounded by

ðdobs � 2gÞ<dtrue<ðdobs þ 2gÞ

3. The temporal order of events can be recovered from their time-stamps if the

difference between their time-stamps is equal to or greater than 2 ticks.

4. The temporal order of events can always be recovered from their time-stamps, if

the event set is at least 0/3g precedent.

These fundamental limits of time measurement are also the fundamental limits to
the faithfulness of a digital model of a physical system.

3.3 Dense Time Versus Sparse Time

Example: It is known a priori that a particular train will arrive at a train station every hour.

If the train is always on time and all clocks are synchronized, it is possible to uniquely

identify each train by its time of arrival. Even if the train is slightly off, say, by 5 min, and

the clocks are slightly out of synchronization, say, by 1 min, there will be no problem in

uniquely identifying a train by its time of arrival. What are the limits within which a train

can still be uniquely identified by its time of arrival?

Assume a set {E} of events that are of interest in a particular context. This set {E}

could be the ticks of all clocks, or the events of sending and receiving messages. If

these events are allowed to occur at any instant of the timeline, then, we call the

time base dense. If the occurrence of these events is restricted to some active
intervals of duration e, with an interval of silence of duration D between any two

active intervals, then we call the time base e/D-sparse, or simply sparse for short

(Fig. 3.6). If a system is based on a sparse time base, there are time intervals during

which no significant event is allowed to occur. Events that occur only in the active

intervals are called sparse events.
It is evident that the occurrences of events can only be restricted if the given

system has the authority to control these events, i.e., these events are in the sphere

of control of the computer system [Dav79]. The occurrence of events outside the

sphere of control of the computer system cannot be restricted. These external events

are based on a dense time base and cannot be forced to be sparse events.

microticks0 1 2 3 4 5 6 7 8 9

sparse events     are only allowed
to occure within the intervals p

time

Fig. 3.6 Sparse time-base
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Example: Within a distributed computing system, the sending of messages can be

restricted to some intervals of the timeline and can be forbidden at some other intervals –

they can be designed to be sparse events.

3.3.1 Dense Time-Base

Suppose that we are given two events e1 and e2 that occur on a dense time base. If

these two events are closer together than 3g, where g is the granularity of the global
time, then, it is not always possible to establish the temporal order, or even a

consistent order of these two events on the basis of the time-stamps generated by the

different nodes if no agreement protocol (see below) is applied.

Example: Consider the scenario of Fig. 3.7 with two events, e1 and e2 which are 2.5

granules apart. Event e1 is observed by node j at time 2 and by node m at time 1, while e2 is
only observed by node k that reports its observation “e2 occurred at 3” to node j and nodem.
Node j calculates a time-stamp difference of one tick and concludes that the events occurred

at about the same time and cannot be ordered. Nodem calculates a time-stamp difference of

2 ticks and concludes that e1 has definitely occurred before e2. The two nodes j and m have

an inconsistent view about the order of event occurrence.

Agreement Protocol. To arrive at a consistent view of the order of non-sparse
events within a distributed computer system (which does not necessarily reflect the

temporal order of event occurrence), the nodes must execute an agreement proto-
col. The first phase of an agreement protocol requires an information interchange

among the nodes of the distributed system with the goal that every node acquires the

differing local views about the state of the world from every other node. At the end

of this first phase, every correct node possesses exactly the same information as

every other node. In the second phase of the agreement protocol, each node applies

a deterministic algorithm to this consistent information to reach the same conclu-

sion about the assignment of the event to an active interval of the sparse time

base–the commonly agreed value. In the fault-free case, an agreement algorithm

requires an additional round of information exchange as well as the resources for

executing the agreement algorithm.

Agreement algorithms are costly, both in terms of communication requirements,

processing requirements, and – worst of all – in terms of the additional delay they

introduce into a control loop. It is therefore expedient to look for solutions to the

consistent temporal ordering problem in distributed computer systems that do not
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clock k
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require these additional overheads. The sparse time model, introduced below,

provides for such a solution.

3.3.2 Sparse Time-Base

Consider a distributed system that consists of two clusters: cluster A generates

events, and cluster B observes these generated events. Each one of the clusters has

its own cluster-wide synchronized time with a granularity g, but these two cluster-

wide time bases are not synchronized with each other. Under what circumstances is

it possible for the nodes in the observing cluster to reestablish consistently the

intended temporal order of the generated events without the need to execute an

agreement protocol?

If two nodes, nodes j and k of cluster A, generate two events at the same cluster-

wide tick ti, i.e., at tick t ji and at tick t ki , then these two events can be, at most, a

distance P apart from each other, where g > P, the granularity of the cluster-wide

time. Because there is no intended temporal order among the events that are

generated at the same cluster-wide tick of cluster A, the observing cluster B should

never establish a temporal order among the events that have occurred at about the

same time. On the other hand, the observing cluster B should always reestablish the
temporal order of the events that have been occurred at different cluster-wide ticks.

Is it sufficient if cluster A generates a 1g/3g precedent event set, i.e., after every

cluster-wide tick at which events are allowed to be generated there will be silence

for at least three granules?

If cluster A generates a 1/3g precedent event set, then it is possible that two

events that are generated at the same cluster-wide granule at cluster A will be time-

stamped by cluster B with time-stamps that differ by 2 ticks. The observing cluster

B should not order these events (although it could), because they have been

generated at the same cluster-wide granule. Events that are generated by cluster A
at different cluster-wide granules (3g apart) and therefore should be ordered by

cluster B, could also obtain time-stamps that differ by 2 ticks. Cluster B cannot

decide whether or not to order events with a time-stamp difference of 2 ticks. To

resolve this situation, cluster A must generate a 1/4g precedent event set. Cluster B
will not order two events if their time-stamps differ by �2 ticks, but will order two

events if their time-stamps differ by�3 ticks, thus reestablishing the temporal order

that has been intended by the sender.

3.3.3 Space-Time Lattice

The ticks of the global clock can be seen as generating a space-time lattice, as

depicted in Fig. 3.8. A node is allowed to generate an event (e.g., send a message) at

the filled dots and must be silent at the empty dots. This rule makes it possible for
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the receiver to establish a consistent temporal order of events without executing an

agreement protocol. Although a sender is allowed to generate an event only at the

filled dots, this is still much faster than executing an agreement protocol, provided a

global time base of sufficient precision is available. Events that are generated at the

filled dots of the sparse time lattice are called sparse events.
Events that occur outside the sphere of control of the computer system cannot be

confined to a sparse time base: they happen on a dense time base and are therefore

not sparse events. To generate a consistent view of events that occur in the

controlled object, and that are observed by more than one node of the distributed

computer system, the execution of an agreement protocol is unavoidable at the

interface between the computer system and the controlled object or other systems

that do not participate in the global time. Such an agreement protocol transforms a

non-sparse event into a sparse event.

3.3.4 Cyclic Representation of Time

Many processes in the technical and biological world are cyclic [Win01]. A cyclic

process is characterized by a regular behavior, where a similar set of action patterns

is repeated in every cycle.

Example: In a typical control system, real-time is partitioned into a sequence of control

cycles (Fig. 3.9). Every control cycle starts with reading the state variables of the controlled

object, proceeds with the execution of the control algorithm, and finishes with the output of

new set-points to the actuators at the interface between the computer system and the

controlled object.

In the cyclic representation of time, the linear time is partitioned into cycles of

equal duration. Every cycle is represented by a circle, where an instant within a

cycle is denoted by the phase, i.e., the angular deviation of the instant from the

beginning of the cycle. Cycle and phase thus denote an instant in a cyclic represen-
tation. In the cyclic representation of sparse time, the circumference of the circle is

not a dense line, but a dotted line, where the size and the distance between dots is

determined by the precision of the clock synchronization.

A sequence of consecutive processing and communication actions, such as

the actions in Fig. 3.9, are phase-aligned, if the termination of one action is

immediately followed by the start of the next consecutive action. If the actions

ticks with output allowed
ticks with output not allowed

node i
node j
node k
node l

silence silence

real-time

Fig. 3.8 Sparse time base
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within a RT-transaction (see Sect. 1.7.3) are phase-aligned, then the overall

duration of the RT transactions is minimized.

If we look at Fig. 3.9, we see that communication services in a typical control

loop are periodically required only in the intervals B and D of a cycle. The shorter
these intervals B and D, the better, since the dead time of the control loop is

reduced. This requirement leads to the model of pulsed data streams, where, in a

time-triggered system, the highest possible bandwidth is allocated periodically in

the intervals B and D, while, during the rest of the cycle, the communication

bandwidth can be allocated to other requests [Kop06].

An extension of the cyclic representation is the spiral representation of time,
where a third axis is introduced to depict the linear progression of the cycles.

3.4 Internal Clock Synchronization

The purpose of internal clock synchronization is to ensure that the global ticks of all

correct nodes occur within the specified precision P, despite the varying drift rate

of the local real-time clock of each node. Because the availability of a proper global

time base is crucial for the operation of a distributed real-time system, the clock

synchronization should not depend on the correctness of a single clock, i.e., it

should be fault-tolerant.

Every node of a distributed system has a local oscillator that (micro)ticks with a

frequency determined by the physical parameters of the oscillator. A subset of the

local oscillator’s microticks called the ticks (or macroticks – see Sect. 3.2.1) is

interpreted as the global time ticks at the node. These global time ticks increment

the local node’s global time counter.

3.4.1 The Synchronization Condition

The global time ticks of each node must be periodically resynchronized within

the ensemble of nodes to establish a global time base with specified precision.

linear model of time cyclic model of time
1  start of cycle

2  start of transmission of sensor data

3  start of processing of control algorithm

4  termination of processing

5  start of output to actuators

6  termination of output operation

1  start of next cycle

A observation of sensor input

B transmission of input data

C processing of control algorithm

D transmission of output data

E output operation at the actuator
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Fig. 3.9 Linear versus cyclic representation of time in a control system
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The period of resynchronization is called the resynchronization interval Rint. At the

end of each resynchronization interval, the clocks are adjusted to bring them into

better agreement with each other. The convergence function F denotes the offset of

the time values immediately after the resynchronization. Then, the clocks drift

again apart until they are resynchronized at the end of the next resynchronization

interval Rint (Fig. 3.10). The drift offset G indicates the maximum accumulated

divergence of any two good clocks from each other during the resynchronization

interval Rint, where the clocks are free running. The drift offset Gdepends on the

length of the resynchronization interval Rint and the maximum specified drift rate r
of the clock:

G ¼ 2rRint

An ensemble of clocks can only be synchronized if the following synchronization
condition holds between the convergence function F, the drift offset Gand the

precision P:

Fþ GbP

Assume that at the end of the resynchronization interval, the clocks have diverged

so that they are at the edge of the precision interval P (Fig. 3.10). The synchroni-

zation condition states that the synchronization algorithm must bring the clocks so

close together that the amount of divergence during the next free-running resyn-

chronization interval will not cause a clock to leave the precision interval.

Byzantine Error. The following example explains how, in an ensemble of three

nodes, a malicious node can prevent the other two nodes from synchronizing their

clocks since they cannot satisfy the synchronization condition [Lam82]. Assume an

ensemble of three nodes, and a convergence function where each of the three nodes

sets its clock to the average value of the ensemble. Clocks A and B are good, while

clock C is a malicious two-faced clock that disturbs the other two good clocks in

Fig. 3.10 Synchronization

condition
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such a manner that neither of them will ever correct their time value (Fig. 3.11), and

will thus eventually violate the synchronization condition.

Such a malicious, two-faced manifestation of behavior is sometimes called a

malicious error or a Byzantine error (see also Sect. 6.1.3). During the exchange of

the synchronization messages, a Byzantine error can lead to inconsistent views

of the state of the clocks among the ensemble of nodes. A special class of

algorithms, the interactive-consistency algorithms [Pea80], inserts additional

rounds of information exchanges to agree on a consistent view of the time values

at all nodes. These additional rounds of information exchanges increase the quality

of the precision at the expense of additional communication overhead. Other

algorithms work with inconsistent information, and establish bounds for the maxi-

mum error introduced by the inconsistency. An example of such an algorithm is the

Fault-Tolerant-Average algorithm, described later in this section. It has been shown

[Lam85] that clock synchronization can only be guaranteed in the presence of

Byzantine errors if the total number of clocks N � (3k + 1), where k is the number

of Byzantine faulty clocks.

3.4.2 Central Master Synchronization

This is a simple non-fault tolerant synchronization algorithm. A unique node, the

central master, periodically sends the value of its time counter in synchronization

messages to all other nodes, the slave nodes. As soon as a slave node receives a new

synchronization message from the master, the slave records the time-stamp of

message arrival. The difference between the master’s time, contained in the syn-

chronization message, and the recorded slave’s time-stamp of message arrival,

corrected by the known latency of the message transport, is a measure of the

deviation of the clock of the master from the clock of the slave. The slave then

corrects its clock by this deviation to bring it into agreement with the master’s clock.

good clock A good clock B

4:00

4:05

4:103:55

“two-faced”
malicious clock C

A 4:00
B 4:05
C 4:10

B 4:05
A 4:00
C 3:55

view at A view at B

Fig. 3.11 Behavior of a malicious clock

68 3 Global Time



The convergence functionF of the central master algorithm is determined by the

difference between the fastest and slowest message transmission to the slave nodes

of the ensemble, i.e., the latency jitter e between the event of writing the synchro-

nization time value by the master and the events of message arrival time-stamping

at all slaves.

Applying the synchronization condition, the precision of the central master

algorithm is given by:

Pcentral ¼ eþ G

The central master synchronization is often used in the startup phase of a distrib-

uted system. It is simple, but not fault tolerant, since a failure of the master ends

the resynchronization, causing the free-running clocks of the slaves to leave the

precision interval soon thereafter. In a variant of this algorithm, a multi-master

strategy is followed: if the active master fails silently and the failure is detected by a

local time-out at a shadow master, one of the shadow masters assumes the role of

the master and continues the resynchronization.

3.4.3 Fault-Tolerant Synchronization Algorithms

Typically, distributed fault-tolerant clock resynchronization proceeds in three dis-

tinct phases. In the first phase, every node acquires knowledge about the state of the

global time counters in all the other nodes by the exchange of messages among the

nodes. In the second phase, every node analyzes the collected information to detect

errors, and executes the convergence function to calculate a correction value for the

local global time counter. A node must deactivate itself if the correction term

calculated by the convergence function is larger than the specified precision of

the ensemble. Finally, in the third phase, the local time counter of the node is

adjusted by the calculated correction value. Existing algorithms differ in the way in

which the time values are collected from the other nodes, in the type of convergence

function used, and in the way in which the correction value is applied to the local

time counter.

Reading the Global Time. In a local-area network, the most important term affect-

ing the precision of the synchronization is the jitter of the time messages that carry

the current time values from one node to all the other nodes. The known minimal

delay for the transport of a time message between two nodes can be compensated

by an a priori known delay-compensation term [Kop87] that compensates for the

delay of the message in the transmission channel and in the interface circuitry.

The delay jitter depends more than anything else on the system level, at which the

synchronization message is assembled and interpreted. If this is done at a high level

of the architecture, e.g., in the application software, all random delays caused by the

scheduler, the operating system, the queues in the protocol software, the message
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retransmission strategy, the media-access delay, the interrupt delay at the receiver,

and the scheduling delay at the receiver, accumulate and degrade the quality of the

time values, thus deteriorating the precision of the clock synchronization. Table 3.1

gives approximate value ranges for the jitter that can be expected at the different

levels [Kop87]:

Since a small jitter is important to achieve high precision in the global time, a

number of special methods for jitter reduction have been proposed. Christian

[Cri89] proposed the reduction of the jitter at the application software level using

a probabilistic technique: a node queries the state of the clock at another node by a

query-reply transaction, the duration of which is measured by the sender. The

received time value is corrected by the synchronization message delay that is

assumed to be half the round-trip delay of the query-reply transaction (assuming

that the delay distribution is the same in both directions). A different approach is

taken in the Time-Triggered Architecture. A special clock synchronization unit has

been implemented to support the segmentation and assembly of synchronization

messages at the hardware level, thereby reducing the jitter to a few microseconds.

The new IEEE 1588 standard for clock synchronization limits the jitter by hardware

assisted time stamping [Eid06].

Impossibility Result. The important role of the latency jitter e for internal synchro-
nization is emphasized by an impossibility result by Lundelius and Lynch [Lun84].

According to this result, it is not possible to internally synchronize the clocks of an

ensemble consisting of N nodes to a better precision than

P ¼ e 1� 1

N

� �

(measured in the same units as e) even if it is assumed that all clocks have perfect

oscillators, i.e., the drift rates of all the local clocks are zero.

The Convergence Function. The construction of a convergence function is demon-

strated by the example of the distributed Fault-Tolerant-Average (FTA) algorithm

in a system with N nodes where k Byzantine faults should be tolerated. The FTA

algorithm is a one-round algorithm that works with inconsistent information and

bounds the error introduced by the inconsistency. At every node, the N measured

time differences between the node’s clock and the clocks of all other nodes are

collected (the node considers itself a member of the ensemble with time difference

zero). These time differences are sorted by size. Then the k largest and the k
smallest time differences are removed (assuming that an erroneous time value is

Table 3.1 Approximate jitter of the synchronization message

Synchronization message assembled and interpreted Approximate range of jitter

At the application software level 500 ms–5 ms

In the kernel of the operating system 10–100 ms
In the hardware of the communication controller Less than 1 ms
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either larger or smaller than the rest). The remaining N � 2k time differences are,

by definition within the precision window definition (since only k values are

assumed to be erroneous and an erroneous value is larger or smaller than a good

value). The average of these remaining N � 2k time differences is the correction

term for the node’s clock.

Example: Figure 3.12 shows an ensemble of seven nodes and one tolerated Byzantine

fault. The FTA takes the average of the five accepted time values shown.

The worst-case scenario occurs if all good clocks are at opposite ends of the

precision window P, and the Byzantine clock is seen at different corners by two

nodes. In the example of Fig. 3.13, node j will calculate an average value of 4P/5
and node k will calculate an average value of 3P/5; the difference between these

two terms, caused by the Byzantine fault, is thus P/5.

Precision of the FTA. Assume a distributed system with N nodes, each one with its

own clock (all time values are measured in seconds). At most k out of the N clocks

behave in a Byzantine manner.

A single Byzantine clock will cause the following difference in the calculated

averages at two different nodes in an ensemble of N clocks:

Ebyz ¼ P=ðN � 2kÞ:

In the worst case a total of k Byzantine errors will thus cause an error term of

Ek�byz ¼ kP=ðN � 2kÞ:

Considering the jitter of the synchronization messages, the convergence function of

the FTA algorithm is given by

FðN; k; eÞ ¼ ðkP=ðN � 2kÞÞ þ e:

precision window P
accepted time values
rejected time values

time difference

Fig. 3.12 Accepted and

rejected time values

precision window Π
good time values
maliciously faulty values

j

k

j

view of node j

view of node k

k
average calculated by node j
average calculated by node k

time differenceFig. 3.13 Worst possible

behavior of a malicious

(Byzantine) clock
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Combining the above equation with the synchronization condition (Sect. 3.4.1)

and performing a simple algebraic transformation, we get the precision of the FTA

algorithm:

PðN; k; e;GÞ ¼ ðeþ GÞN � 2k

N � 3k
¼ ðeþ GÞmðN; kÞ:

where m(N, k) is called the Byzantine error term and is tabulated in Table 3.2.

The Byzantine error term m(N, k) indicates the loss of quality in the precision due
to the inconsistency arising from the Byzantine errors. In a real environment, at

most one Byzantine error is expected to occur in a synchronization round (and even

this will happen very, very infrequently), and thus, the consequence of a Byzantine

error in a properly designed synchronization system is not serious.

The drift-offset Gis determined by the quality of the selected oscillator and the

length of the resynchronization interval. If a standard quartz oscillator with a

nominal drift rate of 10�4 s/s is used, and the clocks are resynchronized every

second, then G is about 100 ms. Because the stochastic drift rate of a crystal

is normally two orders of magnitude smaller than the nominal drift rate that is

determined by the systematic error of the quartz oscillator, it is possible to reduce

the drift offset G by up to two orders of magnitude by performing systematic error

compensation.

Many other convergence functions for the internal synchronization of the clocks

have been proposed and analyzed in the literature [Sch88].

3.4.4 State Correction Versus Rate Correction

The correction term calculated by the convergence function can be applied to the

local-time value immediately (state correction), or the rate of the clock can be

modified so that the clock speeds up or slows down during the next resynchroniza-

tion interval to bring the clock into better agreement with the rest of the ensemble

(rate correction).
State correction is simple to apply, but it has the disadvantage of generating a

discontinuity in the time base. If clocks are set backwards and the same nominal-

time value is reached twice, then, pernicious failures can occur within the real-time

software (see the example in Sect. 3.1.4). It is therefore advisable to implement rate

Table 3.2 Byzantine error term m(N, k)
Number of nodes in the ensemble

Faults 4 5 6 7 10 15 20 30

1 2 1.5 1.33 1.25 1.14 1.08 1.06 1.03

2 3 1.5 1.22 1.14 1.08

3 4 1.5 1.27 1.22
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correction with a bound on the maximum value of the clock drift so that the error in

interval measurements is limited. The resulting global time base then maintains the

chronoscopy property despite the resynchronization. Rate correction can be implemen-

ted either in the digital domain by changing the number of microticks in some of the

(macro)ticks, or in the analogdomainby adjusting thevoltageof the crystal oscillator.To

avoid a common-mode drift of the complete ensemble of clocks, the average of the rate

correction terms among all clocks in the ensemble should be close to zero.

3.5 External Clock Synchronization

External synchronization links the global time of a cluster to an external standard of

time. For this purpose it is necessary to access a timeserver, i.e., an external time

source that periodically broadcasts the current reference time in the form of a time
message. This time message must raise a synchronization event (such as the beep of

a wrist watch) in a designated node of the cluster and must identify this synchroni-

zation event on the agreed time scale. Such a time scale must be based on a widely

accepted measure of time, e.g., the physical second, and must relate the synchroni-

zation event to a defined origin of time, the epoch. The interface node to a

timeserver is called a time gateway. In a fault-tolerant system, the time-gateway

should be a fault-tolerant unit (FTU – see Sect. 6.4.2).

3.5.1 External Time Sources

Assume that the time gateway is connected to a GPS (Global Positioning System).

The accuracy of a GPS receiver is better than 100 ns and it has an authoritative

long-term stability – in some sense, GPS is the worldwide measurement standard

for measuring the progression of time. Alternatively, the external time source can

be a temperature compensated crystal oscillator (TCXO) with a drift rate of better

than 1 ppm, causing a drift offset of better 1 ms/s or an atomic clock, e.g., a Rubidum

clock with a drift rate in the order of 10�12 , causing a drift offset of about 1 ms in 10
days (more expensive atomic clocks are even better). The time gateway periodi-

cally broadcasts time messages containing a synchronization event, as well as the

information to place this synchronization event on the TAI scale. The time gateway

must synchronize the global time of its cluster with the time received from the

external time source. This synchronization is unidirectional, and therefore asym-

metric, as shown in Fig. 3.14. It can be used to adjust the rate of the clocks without

any concern for the occurrence of emergent instability effects.

If another cluster is connected to this primary cluster by a secondary time

gateway, then, the unidirectional synchronization functions in the same manner.

The secondary time gateway considers the synchronized time of the primary cluster

as its time reference, and synchronizes the global time of the secondary cluster.
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While internal synchronization is a cooperative activity among all the members

of a cluster, external synchronization is an authoritarian process: the time gateway

forces its view of external time on all its subordinates. From the point of view of

fault tolerance, such an authoritarian regime introduces a problem: if the authority

sends an incorrect message, then all its obedient subordinates will behave incor-

rectly. However, for external clock synchronization, the situation is under control

because of the inertia of time. Once a cluster has been synchronized, the fault-

tolerant global time base within a cluster acts as a monitor of the time gateway.

An external synchronization message will only be accepted if its content is suffi-

ciently close to the cluster’s view of the external time. The time gateway has only a

limited authority to correct the drift rate of a cluster. The enforcement of a

maximum common-mode correction rate is required to keep the error in relative

time-measurements small. The software in each node of the cluster checks the

maximum correction rate.

The implementation must guarantee that it is impossible for a faulty external

synchronization to interfere with the proper operation of the internal synchronization,

i.e., with the generation of global time within a cluster. The worst possible failure

scenario occurs if the external timeserver fails maliciously – a very low probability

failure mode if the external timeserver is GPS. This leads to a common-mode

deviation of the global time from the external time base with the maximum permitted
deviation rate. In a properly designed synchronization system, this drift from the

external time base will not affect the internal synchronization within a cluster.

3.5.2 Time Gateway

The time gateway must control the timing system of its cluster in the following

ways:

1. It must initialize the cluster with the current external time.

2. It must periodically adjust the rate of the global time in the cluster to bring it into

agreement with the external time and the standard of time measurement, the

second.
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time
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flow of external
synchronization
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Fig. 3.14 Flow of external
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3. It must periodically send the current external time in a time message to the nodes

in the cluster so that a reintegrating node can reinitialize its external time value.

The time gateway achieves this task by periodically sending a time message with

a rate-correction byte. This rate-correction byte is calculated in the time gateway’s

software. First, the difference between the occurrence of a significant event, e.g.,

the exact start of the full second in the timeserver, and the occurrence of the related

significant event in the global time of the cluster, is measured by using the local

time base (microticks) of the gateway node. Then, the necessary rate adjustment is

calculated, bearing in mind the fact that the rate adjustment is bounded by the

agreed maximum rate correction. This bound on the rate correction is necessary to

keep the maximum deviation of relative time measurements in the cluster below an

agreed threshold, and to protect the cluster from faults of the server.

3.5.3 Time Formats

Over the last few years, a number of external-time formats have been proposed

for external clock synchronization. The most important one is the standard for the

time format proposed in the Network Time Protocol (NTP) of the Internet [Mil91].

This time format (Fig. 3.15) with a length of 8 B contains two fields: a 4 B full

seconds field, where the seconds are represented according to UTC, and a fraction

of a second field, where the fraction of a second is represented as a binary fraction

with a resolution of about 232 ps. On January 1, 1972, at midnight the NTP clock

was set to 2,272,060,800.0 s, i.e., the number of seconds since January 1, 1900 at

00:00 h.

The NTP time is not chronoscopic because it is based on UTC which has to

accommodate for the switching second. The occasional insertion of a leap second

into UTC can disrupt the continuous operation of a time-triggered real-time system.

Another time format is the IEEE 1588 standard time format [Eid06]. In this time

format the epoch starts on January 1, 1970 at 00:00 h or is user defined. The full

seconds are counted according to TAI, while the unit of the fraction of a second is

the nanosecond. This leads to abrupt change in the representation whenever a full

second is reached.

The Time-Triggered Architecture (TTA) uses a time format that is a combina-

tion of IEEE 1588 and NTP. The full seconds are counted as in TAI (such as IEEE

1588), but parts of a second are represented in a binary fraction of the full second

(such as NTP). It is thus chronoscopic and conforms fully to the dual system.

range up to the year 2036. i.e., 136 years wrap-around cycle

full seconds UTC, 4 bytes binary fraction of second, 4 bytesFig. 3.15 Time format in the

Network Time Protocol

(NTP)
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Points to Remember

l An event happens at an instant, i.e., at a point of the timeline. A duration is a

section of the timeline delimited by two instants.
l A consistent delivery order of a set of events in a distributed system does not

necessarily reflect the temporal or causal order of the events.
l A physical clock is a device for time measurement that contains a counter and a

physical oscillation mechanism that periodically generates an event to increase

the counter.
l Typical maximum drift rates r of physical clocks are in the range from 10�2

to 10�7 s/s, or lower, depending on the quality (and price) of the resonator.
l The precision denotes the maximum offset of respective ticks of any two clocks

of an ensemble during the time interval of interest.
l The accuracy of a clock denotes the maximum offset of a given clock from the

external time reference during the time interval of interest.
l TAI is a chronoscopic timescale, i.e., a timescale without any discontinuities,

that is derived from the frequency of the radiation of a specified transition of the

cesium atom 133.
l UTC is a non-chronoscopic timescale that is derived from astronomical observa-

tions of the rotation of the earth in relation to the sun.
l A global time is an abstract notion that is approximated by properly selected

microticks from the synchronized local physical clocks of an ensemble.
l The reasonableness condition ensures that the synchronization error is always

less than one granule of the global time.
l If the difference between the time-stamps of two events is equal to or larger than

2 ticks, then that temporal order of events can be recovered, provided the global

time is reasonable.
l The temporal order of events can always be recovered from their time-stamps

if the event set is at least 0/3g precedent.
l If events happen only at properly selected points of a sparse time base, then it is

possible to recover the temporal order of the events without the execution of an

agreement protocol.
l The convergence function F denotes the offset of the time values immediately

after the resynchronization.
l The drift offset Gindicates the maximum divergence of any two good clocks

from each other during the resynchronization interval Rint, in which the clocks

are free running.
l The synchronization condition states that the synchronization algorithm must

bring the clocks so close together that the amount of divergence during the next

free-running resynchronization interval will not cause a clock to leave the

precision interval.
l Clock synchronization is only possible if the total number of clocks N is

larger or equal to (3k + 1), if k is the number of clocks behaving maliciously
faulty.
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l The most important term affecting the precision of the synchronization is the

latency jitter of the synchronization messages that carry the current time values

from one node to all other nodes of an ensemble.
l When applying the fault-tolerant average algorithm, the Byzantine error factor

m(N, k) denotes the loss of quality in the precision caused by the Byzantine errors.
l State correction of a clock has the disadvantage of generating a discontinuity in

the time base.
l While internal synchronization is a cooperative activity among all members of a

cluster, external synchronization is an authoritarian process: the timeserver

forces its view of external time on all its subordinates.
l The NTP time, based on UTC, is not chronoscopic. The occasional insertion of a

leap second can disrupt the continuous operation of a time-triggered real-time

system.
l The time gateway maintains the external synchronization by periodically send-

ing a time message with a rate correction byte to all the nodes of a cluster.
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Review Questions and Problems

3.1 What is the difference between an instant and an event?
3.2 What is the difference between temporal order, causal order, and a consistent

delivery order of messages? Which of the orders implies another?

3.3 How can clock synchronization assist in finding the primary event of an alarm
shower?

3.4 What is the difference between UTC and TAI? Why is TAI better suited as a

time base for distributed real-time systems than UTC?

3.5 Define the notions of offset, drift, drift rate, precision, and accuracy.
3.6 What is the difference between internal synchronization and external

synchronization?

3.7 What are the fundamental limits of time measurement?

3.8 When is an event set e/D-precedent?
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3.9 What is an agreement protocol? Why should we try to avoid agreement proto-

cols in real-time systems? When is it impossible to avoid agreement protocols?

3.10 What is a sparse time base? How can a sparse time base help to avoid

agreement protocols?

3.11 Give an example that shows that, in an ensemble of three clocks, a Byzantine

clock can disturb the two good clocks such that the synchronization condition

is violated.

3.12 Given a clock synchronization system that achieves a precision of 90 ms, what
is a reasonable granularity for the global time? What are the limits for the

observed values for a time interval of 1.1 ms?

3.13 What is the role of the convergence function in internal clock synchroniza-

tion?

3.14 Given a latency jitter of 20 ms, a clock drift rate of 10�5 s/s, and a resynchro-

nization period of 1 s, what precision can be achieved by the central master

algorithm?

3.15 What is the effect of a Byzantine error on the quality of synchronization by the

FTA algorithm?

3.16 Given a latency jitter of 20 ms, a clock drift rate of 10�5 s/s and a resynchro-

nization period of 1 s, what precision can be achieved by the FTA algorithm in

a system with ten clocks where one clock could be malicious?

3.17 Discuss the consequences of an error in the external clock synchronization.

What effect can such an error have on the internal clock synchronization in

the worst possible scenario?
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Chapter 4

Real-Time Model

Overview The objective of this chapter is to introduce the reader to a cross-domain

architecture model of the behavior of a real-time system. This model will be used

throughout the rest of the book. The model is based on three basic concepts, the

concept of a computational component, the concept of state, and the concept of a

message. Large systems can be built by the recursive composition of components

that communicate by the exchange of messages. Components can be reused on the

basis of their interface specification without having to understand the component

internals. Concerns about the understandability have been of utmost importance in

the development of this model.

The chapter is structured as follows. In Sect. 4.1 we give a broad outline of the

model, describing the essential characteristics of a component and amessage. Related
components that work towards a joint objective are grouped into clusters. The
differences between temporal control and logical control are explained.

The following section elaborates on the close relationship between real-time and the

state of a component. The importance of a well-defined ground state for the dynamic

reintegration of a component is highlighted. Section 4.3 refines the message concept

and introduces the notions of event-triggered messages, time-triggered messages, and

data streams. Section 4.4 presents the four interfaces of a component, two operational

interfaces and two control interfaces. Section 4.5 deals with the concept of a gateway
component that links two clusters that adhere to different architectural styles. Sec-
tion 4.6 deals with the specification of the linking interface of a component. The

linking interface is the most important interface of a component. It is relevant for the

integration of a component within a cluster and contains all the information that is

needed for the use of a component. The linking interface specifications consists of

three parts: (1) the transport specification that contains the information for the

transport of the messages, (2) the operational specification that is concerned with

interoperability of components and the establishment of themessage variables, and (3)

the meta-level specification that assigns meaning to the message variables. Points to

consider when composing a set of components to build systems of subsystems or

system of systems are discussed in Sect. 4.6. In this section the four principles of

composability are introduced and the notion of a multilevel system is explained.

H. Kopetz, Real-Time Systems: Design Principles for Distributed Embedded Applications,
Real-Time Systems Series, DOI 10.1007/978-1-4419-8237-7_4,
# Springer Science+Business Media, LLC 2011
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4.1 Model Outline

Viewed from the perspective of an outside observer, a real-time (RT) system can be

decomposed into three communicating subsystems: a controlled object (the physi-
cal subsystem, the behavior of which is governed by the laws of physics),

a “distributed” computer subsystem (the cyber system, the behavior of which is

governed by the programs that are executed on digital computers), and a human
user or operator. The distributed computer system consists of computational nodes

that interact by the exchange of messages. A computational node can host one or

more computational components.

4.1.1 Components and Messages

We call the process of executing an algorithm by a processing unit a computation or
task. Computations are performed by components. In our model, a component is a

self-contained hardware/software unit that interacts with its environment exclu-

sively by the exchange of messages. We call the timed sequence of output messages
that a component produces at an interface with its environment the behavior of the
component at that interface. The intended behavior of a component is called its

service. An unintended behavior is called a failure. The internal structure of a

component, whether complex or simple, is neither visible, nor of concern, to a user

of a component.

A component consists of a design (e.g., the software) and an embodiment (e.g.,
the hardware, including a processing unit, memory, and an I/O interface). A real-
time component contains a real-time clock and is thus aware of the progression of

real-time. After power-up, a component enters a ready-for-start state to wait for a

triggering signal that indicates the start of execution of the component’s computa-

tions. Whenever the triggering signal occurs, the component starts its predefined

computations at the start instant. In then reads input messages and its internal state,

produces output messages and an updated internal state, and so on until it terminates

its computation – if ever – at a termination instant. It then enters the ready-for-start
state again to wait for the next triggering signal. In a cyclic system, the real-time

clock produces a triggering signal at the start of the next cycle.

An important principle of our model is the consequent separation of the compu-
tational components from the communication infrastructure in a distributed com-

puter system. The communication infrastructure provides for the transport of

unidirectional messages from a sending component to one or more receiving

components (multicasting) within a given interval of real-time. Unidirectionality
of messages supports the unidirectional reasoning structure of causal chains and
eliminates any dependency of the sender on the receiver(s). This property of sender
independence is of utmost importance in the design of fault-tolerant systems,

because it avoids error back-propagation from a faulty receiving component to a

correct sending component by design.
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Multicasting is required for the following reasons:

1. Multicasting supports the non-intrusive observation of component interactions

by an independent observer component, thus making the interactions of compo-

nents perceptually accessible and removing the barrier to understanding that has

its origin in hidden interactions (see Sect. 2.1.3).
2. Multicasting is required for the implementation of fault-tolerance by active

redundancy, where each single message has to be sent to a set of replicated

components.

A message is sent at a send instant and arrives at the receiver(s) at some later

instant, the receive instant. The message-paradigm combines the temporal-control

and the value aspect of an interaction into a single concept. The temporal properties

of a message include information about the send instants, the temporal order, the

inter-arrival time of messages (e.g., periodic, sporadic, aperiodic recurrence), and

the latency of the message transport. Messages can be used to synchronize a sender

and a receiver. A message contains a data-field that holds a data structure that is

transported from the sender to the receiver. The communication infrastructure is

agnostic about the contents of the data field. The message concept supports data
atomicity (i.e., atomic delivery of the complete data structure contained in a

message). A single well-designed message-passing service provides a simple inter-

face of a component to other components inside and outside a node and to the

environment of a component. It facilitates encapsulation, reconfiguration, and the

recovery of component services.

4.1.2 Cluster of Components

A cluster is a set of related components that have been grouped together in order

to achieve a common objective (Fig. 4.1). In addition to the set of components,
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Fig. 4.1 Example of an in-car cluster
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a cluster must contain an intra-cluster communication system that provides for the

transport of messages among the components of the cluster. The components that

form a computational cluster agree on a common architectural style (see the last

paragraphs in Sect. 2.2.4).

Example: Figure 4.1 depicts an example of a computational cluster within a car. This

cluster consists of a computational component, the assistant system, and gateway compo-

nents to the man–machine interface (the driver), the physical subsystems of the car, and a

gateway to other cars via a wire-less vehicle-to-vehicle communication link.

4.1.3 Temporal Control Versus Logical Control

Let us revisit the rolling mill example of Fig. 1.9 of Chap. 1 and specify a relation

between measured variables that must be monitored by an alarm-monitoring task in

the MMI component. Assume that the pressures p1, p2, and p3, between the roles

of the three drives are measured by the three controller components of Fig. 1.9.

The measurements are sent to the man–machine interface (MMI) component for

checking the following alarm condition:

whenð p1<p2ð Þ ^ p2<p3ð ÞÞ
then everything ok
else raise pressure alarm;

This looks like a reasonable specification at the user level. Whenever the pressure

between the rolls does not satisfy the specified condition, a pressure alarm must be

raised.

During the refinement of this specification by a system architect, four different

tasks (threemeasurement tasks in the three control nodes and one alarm-monitoring
task in the MMI node of Fig. 1.9) must be designed. The following questions

concerning the temporal activation of these tasks arise:

1. What is the maximum tolerable time interval between the occurrence of the

alarm condition in the controlled object and the raising of the alarm at the MMI?

Because the communication among the components takes a finite amount of

time, some time intervals are unavoidable!

2. What are the maximum tolerable time intervals between the three pressure

measurements at the three different control nodes? If these time intervals are

not properly controlled, false alarms will be generated or important alarms will

be missed.

3. When and how often do we have to activate the pressure measurement tasks at

the three control nodes?

4. When do we have to activate the alarm-monitoring task at the alarm-monitoring

component (the MMI component in Fig. 1.9)?

Because these questions are not answered by the given specification, it is evident that

this specification lacks precise information concerning the architectural require-

ments in the temporal domain. The temporal dimension is buried in the ill-specified
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semantics of thewhen statement. In this example, thewhen statement is intended to

serve two purposes. It is specifying

1. the point in time when the alarm condition must be raised, and

2. the conditions in the value domain that must be monitored.

It thus intermingles two separate issues, the behavior in the time domain and the

behavior in the value domain. A clean distinction between these two issues requires

a careful definition of the concepts of temporal control and logical control.
Temporal control is concerned with determining the instants in the domain of

real time when computations must be performed, i.e., when tasks must be activated.

These instants are derived from the dynamics of the application. In the above

example, the decision regarding the instants at which the pressure measuring

tasks and the alarm-monitoring task must be activated is an issue of temporal

control. Temporal control is related to the progression of real-time.
Logical control is concerned with the control flowwithin a task that is determined

by the given task structure and the particular input data, in order to realize the desired

computation. In the above example, the evaluation of the branch condition and the

selection of one of the two alternatives is an example of logical control. The time

interval needed for the execution of a task that performs the logical control is

determined by the frequency of the oscillator that drives the processing unit – we

call this time-base the execution time. The execution time is determined by the given

implementation and will change if we replace the given processor by a faster one.

Since temporal control is related to real time, while logical control is related to

execution time, a careful distinction must be made between these two types of

control (see also Sect. 8.3.4). A good design will separate these two control issues in

order to decouple the reasoning about temporal constraints dictated by the applica-

tion, from the reasoning about logical issues inside the algorithmic part of a

program. Synchronous real-time languages, such as LUSTRE [Hal92], ESTEREL

[Ber85], and SL [Bou96] distinguish cleanly between logical control and temporal

control. In these languages, the progression of real-time is partitioned into an

(infinite) sequence of intervals of specified real-time duration, which we call

steps. Each step begins with a tick of a real-time clock that starts a computational

task (logical control). The computational model assumes that a task, once activated

by the tick of a real-time clock (temporal control), finishes its computation quasi
immediately. Practically this means that a task must terminate its executions before

the next triggering signal (the next tick of the real-time clock) initiates the next

execution of the task.

The periodic finite state machine (PFSM) model [Kop07] extends the classic

FSM, which is concerned with logical control, by introducing a new dimension for

the progression of a global sparse time to cover temporal control issues.
If the issues of temporal control and logical control are intermingled in a

program segment, then it is not possible to determine the worst-case execution

time (WCET – see Sect. 10.2) of this program segment without analyzing the

behavior of the environment of this program segment. This is a violation of the

design principle Separation of Concerns (see Sect. 2.5).
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Example: A semaphore wait statement is a temporal control statement. If a semaphore
wait statement is contained in a program segment that also includes logical control

(algorithmic) statements, then the temporal behavior of this program segment depends

on both, the progress of execution time and the progress of real-time (see also Sects. 9.2

and 10.2).

4.1.4 Event-Triggered Control Versus Time-Triggered Control

In Sect. 4.1.1, we introduced the notion of a triggering signal, i.e., a control signal
that indicates the instant when an activity should start in the temporal domain. What

are the possible origins of such a triggering signal? The triggering signal can be

associated either with the occurrence of a significant event – we call this event-
triggered control – or with the arrival of a specified instant on the time line –we call
this time-triggered control.

The significant events that form the basis of event-triggered control can be the

arrival of a particular message, the completion of an activity inside a component,

the occurrence of an external interrupt, or the execution of a send message state-
ment by the application software. Although the occurrences of significant events are
normally sporadic, there should be a minimal real-time interval between two

successive events so that an overload of the communication system and the receiver

of the events can be avoided. We call such an event-stream, for which a minimum

inter-arrival time between events is maintained, a rate-controlled event stream.

Time-triggered control signals are derived from the progression of the global time

that is available in every component. Time-triggered control signals are normally

cyclic. A cycle can be characterized by its period, i.e., the real-time interval between

two successive cycle starts, and by its phase, that is the interval between the start of
the period, expressed in the global time, and the cycle start (see also Sect. 3.3.4).We

assume that a cycle is associated with every time-triggered activity.

4.2 Component State

The concept of state of a component is introduced in order to separate past behavior
from future behavior of a real-time component. The concept of state requires a clear

distinction between past events and future events, i.e., there must be a consistent

temporal order among the events of significance (refer to Sect. 3.3.2).

4.2.1 Definition of State

The notion of state is widely used in the computer science literature, albeit

sometimes with meanings that are different from the meaning of state that is useful
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in a real-time system context. In order to clarify the situation, we follow the precise

definition of Mesarovic [Mes89, p. 45], which is the basis for our elaborations:

The state enables the determination of a future output solely on the basis of the future input

and the state the system is in. In other words, the state enables a “decoupling” of the past

from the present and future. The state embodies all past history of a system. Knowing the

state “supplants” knowledge of the past. . . . Apparently, for this role to be meaningful, the

notion of past and future must be relevant for the system considered.

The sparse time model introduced in Sect. 3.3.2 makes it possible to establish

the consistent system-wide separation of the past from the future that is necessary

to define a consistent system state in a distributed real-time computer system.

4.2.2 The Pocket Calculator Example

Let us look at the familiar example of a pocket calculator to investigate the concept

of state in more detail. An operand, i.e., a number of keyboard digits, must be

entered into the calculator before the selected operator, e.g., a key for the trigono-

metric function sine, can be pressed to initiate the computation of the selected

function. After the computation terminates, the result is displayed at the calculator

display. If we consider the computation to be an atomic operation and observe

the system immediately before or after the execution of this atomic operation, the

internal state of this simple calculator device is empty at the points of observation

Let us now observe the pocket calculator (Fig. 4.2) during the interval between

the start of the computation and the end of the computation. If the internals of the

device can be observed, then a number of intermediate results that are stored in the

local memory of the pocket calculator can be traced during the series expansion of

the sine function. If the computation is interrupted at an instant between the instants

start and end, the contents of the program counter and all memory cells that hold the

intermediate results form the state at this instant of interruption. After the end

instant of the computation, the contents of these intermediate memory cells are no

longer relevant, and the state is empty again. Figure 4.3 depicts a typical expansion
and contraction of the state during a computation.

Let us now analyze the state (sometimes also called history state or h-state) of a

pocket calculator used to sum up a set of numbers. When entering a new number,

the sum of the previously entered numbers must be stored in the device. If we

interrupt the work after having added a subset of numbers and continue the addition

computational device

computation

h-state

input output

endstart
Fig. 4.2 Model of a pocket

calculator
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with a new calculator, we first have to input the intermediate result of the previously

added numbers. At the user level, the state consists of the intermediate result of the

previous additions. At the end of the operation, we receive the final result and clear

the memory of the calculator. The state is empty again.

From this simple example we can conclude that the size of the state of a system

depends on the instant of observation of the system. If the granularity of observa-

tions is increased, and if the observation points are selected immediately before or

after an atomic operation at the chosen level of abstraction, then, the size of the state

can be reduced.

The state at any instant of interruption is contained in the contents of the program

counter and all state variables that must be loaded into a virgin hardware device to

resume the operation from the instant of interruption onward. If an interruption is

caused by a failure of a component and we must reintegrate the component into a

running system, then the size of the state that must be reloaded into the repaired

component is of concern.

If our hardware device is a programmable computer, we must first load the

software, i.e., operating system, the set of application programs, and the initial

values for all state variables, into a virgin hardware device before we can start a

computation. We call the totality of software that has to be loaded into a virgin

hardware device the core image or the job. Normally, the job is a data structure that

is static, i.e., it is not changed during the execution of the software. In some

embedded hardware devices the job is stored in a ROM (read-only memory) and

thus the software becomes literally a part of the hardware.

4.2.3 Ground State

In order to facilitate the dynamic reintegration of a component into a running

system, it is necessary to design periodic reintegration instants into the behavior,

where the size of a component’s state at the reintegration instant contained is a

small set of well-defined application specific state variables. We call the state at the

reintegration instant the ground state (g-state) of a component and the temporal

interval between two reintegration points the ground cycle.
The ground state at the reintegration point is stored in a declared g-state data

structure. Designing a minimal ground state data structure is the result of an explicit

design effort that involves a semantic analysis of the given application. The designer

start termination

real-time

h-
st

at
eFig. 4.3 Expansion and

contraction of the state during
a computation
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has to find periodic instants where there is a maximum decoupling of future behavior

from past behavior. This is relatively easy in cyclic applications, such as in control

applications and multimedia applications. In these applications, a natural reintegra-

tion instant is immediately after the termination of one cycle and before the

beginning of the next cycle. Design techniques for the minimization of the ground

state are discussed in Sect. 6.6.

At the reintegration instant, no task may be active and all communication

channels must be flushed, i.e., there are no messages in transit [Ahu90]. Consider

a node that contains a number of concurrently executing tasks that exchange

messages among each other and with the environment of the node. Let us choose

a level of abstraction that considers the execution of a task as an atomic action. If
the execution of the tasks is asynchronous, then, the situation depicted in the upper

part of Fig. 4.4, can arise; at every instant, there is at least one active task, thus

implying that there is no instant when the ground state of the node can be defined.

In the lower part of Fig. 4.4, there is an instant when no task is active and when

all channels are empty, i.e., when the system is in the g-state. If a node is in the

g-state, then the entire state that is essential for the future operation of the node is

contained in the declared ground state data structure.

Example: Consider the relation between the size of the g-state and the duration of the

ground (g) cycle in the design of a clock. If the g-cycle is 24 h and the start of a new day is

the reintegration instant, then the g-state is empty. If every complete hour is a reintegration

instant, then the g-state contains 5 bits (to identify one out of 24 h per day). If every

complete minute is a reintegration instant, then the g-state is 11 bits (to identify one of

1,440 min per day). If every complete second is a reintegration instant, then the g-state is

17 bits (to identify one out of 86,400 s per day). It depends on the application characteristics

to determine which one of the above alternatives is optimal for a given application. If the

clock is an alarm clock that can store up to five alarms and the accuracy of an alarm is

5 min, then the g-state for every alarm is 9 bits (8 bit for the alarm and 1 bit to denote

whether the alarm is on or off). If we assume that the reintegration cycle is 1 s and 5 alarms

must be supported, then the g state message in this simple example is 62 bits in lengths. This

g-state can be stored in an 8-byte data structure. In the restart message, the time field must

be corrected such that it contains the precise time value at the restart instant.

Table 4.1 shows that g-state recovery is substantially different from checkpoint
recovery that is used to establish a consistent state after a failure in a non-real-time

data-intensive system.

task A

task B

task C

ground state

task A

task B

task C

active

active

real-time

real-time

Fig. 4.4 Task executions:

without (above), and with

(below) ground state

4.2 Component State 87



4.2.4 Database Components

We call a component where the number of dynamic data elements, i.e., data elements

that are modified by the computations, is too large for storing them in a single ground

state message a database component. The data elements that are contained in a

database component can be either part of the state or archival data.
The term archival data refers to data that has been collected for archival

purposes and does and not have a direct influence on the future behavior of the

component. Archival data is needed to record the history of production process

variables in order to be able to analyze a production process at some later time line.

It is a good practice to send archival data to a remote storage site for archival data as

soon as possible.

Example: The legendary black box in an airplane contains archival data. One could send

these data immediately after collection via a satellite link to a storage site on the ground in

order to avoid the problems of having to recover a black box after an accident.

4.3 The Message Concept

The concept of a message is the third basic concept of our model. A message is an
atomic data structure that is formed for the purpose of communication, i.e., data

transmission and synchronization among components.

4.3.1 Message Structure

The concept of a message is related to the concept of a letter in the postal system.

A message consists of a header, a data field, and a trailer. The header, corresponding

to the envelope of a letter, contains the port address of the receiver (the mailbox)

where the message must be delivered, information about how the message must be

Table 4.1 Comparison of g-state recovery and checkpoint recovery

G-state recovery Checkpoint recovery

Data selection Application specific small data set that

is essential for the future operation

of the system.

All data elements that have been

modified since the start of the

computation.

Data

modification

G-state data is modified to establish

consistency between the g-state

and the state of the environment

at the future reintegration instant.

Rollback of the environment is not

possible in a real-time system.

No modification of checkpoint

data. Consistency is

established by rolling the

(data) environment back to the

instant when the checkpoint

data was captured.
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handled (e.g., a registered letter), and may contain the address of the sender. The

data field contains the application specific data of the message, corresponding to

the content of a letter. The trailer, corresponding to the signature in a letter, contains

information that allows the receiver to detect whether the data contained in the

message is uncorrupted and authentic. There are different types of trailers in use:

the most common trailer is a CRC-field that allows the receiver to determine

whether the data field has been corrupted during transport. A message may also

contain an electronic signature in the trailer that makes it possible to determine

whether the authenticated contents of the message have not been altered (see

Sect. 6.2). The notion of atomicity implies that a message is delivered either in its

entirety or not at all. If a message is corrupted or only parts of the message arrive at

the receiver’s site, the whole message is discarded.

The temporal dimension of the message concept relates to the instants when a

message is sent by the sender and received by the receiver, and consequently how

long the message has been in transit. We call the interval between the send instant
and the receive instant the transport delay. A second aspect of the temporal

dimension relates to the rate of message production by the sender and message

consumption by the receiver. If the sending rate is constrained, then we speak about

a rate-constrained message system. In case the sender’s rate is not constrained, the

sender may overload the transport capacity of the communication system (we call

this congestion) or the processing capacity of the receiver. In case the receiver

cannot keep up with the message production rate of the sender, the receiver can

send a control message to the sender telling the sender to slow down (back pressure
flow control). Alternatively, the receiver or the communication system may simply

discard messages that exceed its processing capacity.

4.3.2 Event Information Versus State Information

The state of a dynamic system changes as real-time progresses. Let us assume that

we periodically observe the state variables of a system with a duration d between

two successive observation instants. If we observe that the value of all state

variables is the same in two successive observations, then we infer that no event,
i.e., change of state, has occurred in the last observation interval d. This conclusion
is only valid, if the dynamics of the system is slow compared to our observation

interval d (refer to Shannon’s theorem [Jer77]). If two successive observations of

the values of some state variables differ, then we conclude that at least one event

has occurred in the last observation interval d. We can report about the occurrence

of an event, i.e., a change of state, in two different ways: either by sending a single

message containing event information or by sending a sequence of messages

containing state information.
We talk about event information if the information conveys the difference in

values of the previous state observation and the current state observation.
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The instant of the current (later) observation is postulated to be the instant of event

occurrence. This assumption is not fully accurate, since the event may have

occurred at any instant during the last interval of duration d. We can reduce this

temporal observation error of an event by making the interval d smaller, but we

cannot fully eliminate the temporal uncertainty about the observation of events.

This holds true even if we use the interrupt system of a processor to report about an

event. The input signal that relays the occurrence of an interrupt is not sensed

continuously by the processor, but only after the termination of the execution of an

instruction. This delay is introduced in order to reduce the amount of processor
state that has to be saved and restored in the processor in order to be able to continue
the interrupted task after the interrupt has been served. As outlined in Sect. 4.2.3,

the state is minimal immediately before or after the execution of an atomic opera-

tion – in this case, the execution of a complete instruction by a processor.

If the precise timing of an event is critical, we can provide a separate dedicated

hardware device to time-stamp the observed state-change of the interrupt line

immediately and thus reduce the temporal observation error to a value that is in

the order of magnitude of the cycle time of the hardware. Such hardware devices are

introduced to achieve precise clock synchronization in distributed systems, where

the precision of the distributed clocking system must be in the nanosecond range.

Example: The IEEE 1588 standard for clock synchronization suggests the implementation

of a separate hardware device to precisely capture the arrival instant of a clock synchroni-

zation message.

We talk about state information if the information conveys the values of the

current state variables. If the data field of a message contains state information, it is
up to the receiver to compare two successive state observations and determine

whether an event has occurred or not. The temporal uncertainty about the event

occurrence is the same as above.

4.3.3 Event-Triggered Message

A message is called event-triggered (ET) if the triggering signal for sending the

message is derived from the occurrence of a significant event, such as the execution

of a send message command by the application software.

ET messages are well suited to transport event information. Since an event refers
to a unique change of state, the receiver must consume every single event message

and it is not allowed to duplicate an event message. We say that an event message

must adhere to the exactly-once semantics. The event message model is the standard

model of message transmission that is followed in most non-real time systems.

Example: The event message valve must be closed by 5� means that the new intended

position of the valve equals the current position plus 5�. If this event message is lost or

duplicated, then the image of the state of the valve position in the computer will differ from
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the actual state of the valve position in the environment by 5�. This error can be corrected

by state alignment, i.e., the (full) state of the intended valve position is sent to the valve.

In an event-triggered system, error detection is in the responsibility of the sender

who must receive an explicit acknowledgment message from the receiver telling the

sender that the message has arrived correctly. The receiver cannot perform error

detection, because the receiver cannot distinguish between no activity by the sender
and loss of message. Thus the control flow must be bidirectional control flow, even
if the data flow is only unidirectional. The sender must be time-aware, because it

must decide within a finite interval of real time that the communication has failed.

This is one reason why we cannot build fault-tolerant system that are unaware of the

progression of real time.

4.3.4 Time-Triggered Message

A message is called time-triggered ( TT) if the triggering signal for sending the

message is derived from the progression of real-time. There is a cycle, characterized
by its period and phase, assigned to every time-triggered message before the system

starts operating. At the instant of cycle start, the transmission of the message is

initiated automatically by the operating system. There is no send message command
necessary in TT message transmission.

TT messages are well suited to transport state information. A TT message that

contains state information is called a state message. Since a new version of a state

observation normally replaces the existing older version, it is reasonable that a new

state message updates-in-place the older message. On reading, a state message is

not consumed; it remains in the memory until it is updated by a new version. The

semantics of state messages is similar to the semantics of a program variable that
can be read many times without consuming it. Since there are no queues involved in

state message transmissions, queue overflow is no issue. Based on the a priori
known cycle of state messages, the receiver can perform error detection autono-
mously to detect the loss of a state message. State messages support the principle of
independence (refer to Sect. 2.5) since sender and receiver can operate at different

(independent) rates and there is no means for a receiver to influence the sender.

Example: A temperature sensor observes the state of a temperature sensor in the environ-

ment every second. A state-message is well suited to transport this observation to a user that

stores this observation in a program variable named temperature. The user-program can

read this variable temperature whenever it needs to refer to the current temperature of the

environment, knowing that the value stored in this variable is up to date to within about 2 s.
If a single state message is lost, then for one cycle the value stored in this variable is up to
date to only within about 3 s. Since, in a time-triggered system, the communication system

knows a priori when a new state message must arrive, it can associate a flag with the

variable temperature to inform the user if the variable temperature has been properly

updated in the last cycle.
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4.4 Component Interfaces

Let us assume that the design of a large component-based system is partitioned into

two distinct design phases, architecture design and component design (see also

Sect. 11.2 on system design). At the end of the architecture design phase, a platform
independent model (PIM) of a system is available. The PIM is an executable model

that partitions the system into clusters and components and contains the precise

interface specification (in the domains of value and time) of the linking interfaces of

the components. The linking interface specification of the PIM is agnostic about the
component implementation and can be expressed in a high-level executable system

language, e.g., in System C. A PIM component that is transformed to a form that can

be executed on the final execution platform is called a platform-specific model
(PSM) of the component. The PSM has the same interface characteristics as the

PIM. In many cases, an appropriate compiler can transform the PIM to the PSM

automatically.

An interface should serve a single well-defined purpose (Principle of separation
of concerns, see Sect. 2.5). Based on purpose, we distinguish between the following
four message interfaces of a component (Fig. 4.5):

l The Linking Interface (LIF) provides the specified service of the component at

the considered level of abstraction. This interface is agnostic about the compo-

nent implementation. It is the same for the PIM and the PSM.
l The Technology Independent Control Interface (TII) is used to configure and

control the execution of the component. This interface is agnostic about the

component implementation. It is the same for the PIM and the PSM.
l The Technology Dependent Debug Interface (TDI) is used to provide access to

the internals of a component for the purpose of maintenance and debugging. This

interface is implementation specific.
l The Local Interface links a component to the external world that is the external

environment of a cluster. This interface is syntactically specified at the PSM

level only, although the semantic content of this interface is contained in the LIF.

The LIF and the local interface are operational interfaces, while the TII and TDI

are control interfaces. The control interfaces are used to control, monitor, or debug

local interfaces LIF - linking interface
for the composition

TII - technology independent interface

TDI - Technology dependant interface
for looking inside a component
(e.g. for internal diagnosis)

(e.g. process
input/output)

for component configuration and
resource management

component
of components

Fig. 4.5 The four interfaces of a component
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a component, while the operational interfaces are in use during the normal

operation of a component. Before discussing these four interfaces in detail, we

elaborate on some general properties of message interfaces.

4.4.1 Interface Characterization

Push versus Pull Interface. There are two options to handle the arrival of a new

message at the interface of a receiving component:

l Information push. The communication system raises an interrupt and forces the

component to immediately act on the message. Control over the temporal

behavior of the component is delegated to the environment outside of the

component.
l Information pull. The communication system puts the message in an intermedi-

ate storage location. The component looks periodically if a new message has

arrived. Temporal control remains inside the component.

In real-time systems, the information pull strategy should be followed whenever

possible. Only in situations when an immediate action is required and the delay of

one cycle that is introduced by the information pull strategy is not acceptable, one

should resort to the information push strategy. In the latter case, mechanisms must

be put into place to protect the component from erroneous interrupts caused by

failures external to the component (see also Sect. 9.5.3). The information push

strategy violates the principles of independence (see Sect. 2.5).

Example: An engine control component for an automotive engine worked fine as long as it

was not integrated with the theft avoidance system. The message interface between the

engine controller and the theft avoidance system was designed as a push interface, causing

the sporadic interruption of a time-critical engine control task when a message arrived from

the theft avoidance system at an ill-timed instant. As a consequence the engine controller

sporadically missed a deadline and failed. Changing the interface to a pull interface solved
the problem.

Elementary versus Composite Interface. In a distributed real-time system, there are

many situations where a simple unidirectional data flow between a sending and a

receiving component must be implemented. We call such an interface elementary if
both the data flow and the control flow are unidirectional. If, in a unidirectional data

flow scenario, the control flow is bidirectional we call the interface composite
(Fig. 4.6) [Kop99].

data
elementary
interface

composite
interface

control
A

example:
state message
in a DPRAM

example:
queue of event
messages

B

data

control
A BFig. 4.6 Elementary vs.

composite interface
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Elementary interfaces are inherently simpler than composite interfaces, because

there is no dependency of the behavior of the sender on the behavior of the receiver.
We can reason about the correctness of the sender without having to consider the

behavior of the receiver. This is of particular importance in safety-critical systems.

4.4.2 Linking Interface

The services of a component are accessible at its cluster LIF. The cluster LIF of a

component is an operational message-based interface that interconnects a compo-

nent with the other components of the cluster and is thus the interface for the

integration of components into the cluster. The LIF of a component abstracts from

the internal structure and the local interfaces of the component. The specification of

the LIF must be self-contained and cover not only the functionality and timing of

the component itself, but also the semantics of its local interfaces. The LIF is

technology agnostic in the sense that the LIF does not expose implementation

details of the internals of the component or of its local interfaces. A technology

agnostic LIF ensures that different implementations of computational components

(e.g., general purpose CPU, FPGA, ASIC) and different local Input/Output sub-

systems can be connected to a component without any modification to the other

components that interact with this component across its message based LIF.

Example: In an input/output component, the external input and output signals are

connected by a local point-to-point wiring interface. The introduction of a bus system,

e.g., a CAN bus, will not change the cluster LIF of the input/output component, as long as

the temporal properties of the data appearing at the LIF are the same.

4.4.3 Technology Independent Control Interface

The technology independent interface is a control interface that is used to configure
a component, e.g., assign the proper names to a component and its input/output

ports, to reset, start, and restart a component and to monitor and control the

resource requirements (e.g., power) of a component during run time, if required.

Furthermore, the TII is used to configure and reconfigure a component, i.e., to

assign a specific job (i.e., core image) to the programmable component hardware.

Themessages that arrive at the TII communicate either directlywith the component

hardware (e.g., reset), with the component’s operating system (e.g., start a task), or
with themiddleware of the component, but not with the application software. The TII

is thus orthogonal to the LIF. This strict separation of the application specific message

interfaces (LIF) from the system control interface of a component (TII) simplifies

the application software and reduces the overall complexity of a component (see also

the principle of separation of concerns in Sect. 2.5).
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4.4.4 Technology Dependent Debug Interface

The TDI is a special control interface that provides a means to look inside a

component and to observe the internal variables of a component. It is related to

the boundary scan interface that is widely used for testing and debugging large

VLSI chips and has been standardized in the IEEE standard 1149.1 (also known as

the JTAG Standard). The TDI is intended for the person who has a deep under-

standing of the component internals. The TDI is of no relevance for the user of the

LIF services of the component or the system engineer who configures a component.

The precise specification of the TDI depends on the technology of the component

implementation, and will be different if the same functionality of a component is

realized by software running on a CPU, by an FPGA or by an ASIC.

4.4.5 Local Interfaces

The local interfaces establish a connection between a component and its outside

environment, e.g., the sensors and actuators in the physical plant, the human opera-

tor, or another computer system. A component that contains a local interface is

called a gateway component or an open component, in contrast to a component that

does not contain a local interface, which is called a closed component. The distinc-
tion between open and closed components is important from the point of view of the

specification of the semantics of the LIF of the component. Only closed components

can be fully specified without knowing the context of use of the component.

From the point of view of the cluster LIF, only the timing and the semantic
content, i.e., the meaning of the information exchanged across a local interface is of

relevance, while the detailed structure, naming, and access mechanisms of the local

interface is intentionally left unspecified at the cluster level. A modification of the

local access mechanisms, e.g., the exchange of a CAN Bus by Ethernet, will not

have any effect on the LIF specification, and consequently on the users of the LIF

specification, as long as the semantic content and the timing of the relevant data

items are the same (see also the principle of abstraction in Sect. 2.5).

Example: A component that calculates a trigonometric function is a closed component. Its
functionally can be formally specified. A component that reads a temperature sensor is an

open component. The meaning of temperature is application specific, since it depends on

the position where the sensor is placed in the physical plant

4.5 Gateway Component

Viewed from the perspective of a cluster, a gateway component is an open compo-
nent that links two worlds, the internal world of the cluster and the external world of
the cluster environment. A gateway component acts as amediator between these two
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worlds. It has two operational interfaces, the LIF message interface to the cluster

and the local interface to the external world, which can be the physical plant, a

man–machine interface, or another computer system (Fig. 4.7). Viewed from the

outside of a cluster, the role of the interfaces is reversed. The previous local interface
becomes the new LIF and the previous LIF becomes the new local interface.

4.5.1 Property Mismatches

Every system is developed according to an architectural style, i.e., a set of adopted
rules and conventions for the concept formation, representation of data, naming,

programming, interaction of components, semantics of the data, and many more.

The architectural style characterizes the properties of the entities that represent the
design. The details of the architectural style are sometimes explicitly documented,

but more often only implicitly followed by the development team, reflecting the

unstated conventions that govern the development community (see also the last

paragraph of Sect. 2.2.4).

Whenever a communication channel links two systems, developed by two

different organizations, it is highly probable that some of the properties of the

messages that are exchanged across this channel are in disagreement. We call any

disagreement in a property of the data or the protocol between the sender and the

receiver of a message a property mismatch. It is up to a gateway component to

resolve property mismatches.

Example: Assume that there is a difference in endianness, i.e., the byte ordering of data,

between the sender and the receiver of a message. If the sender assumes big endian, i.e., the
most significant byte is first, and the receiver assumes little endian, i.e., the least significant
byte is first, then this property mismatch has to be resolved either by the sender, or by the

receiver, or by an intermediate connector system, i.e., the gateway component.

Property mismatches occur at the borders where systems interact, not inside a

well-designed system. Inside a system, where all partners respect the rules and

constraints of the architectural style, property mismatches are normally no issue.
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Fig. 4.7 Gateway components between the LIF and the local external world interface
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Property mismatches should be resolved in the gateway components that link two

systems in order to maintain the integrity of the architectural styles within each

of the interacting subsystems.

4.5.2 LIF Versus Local Interface of a Gateway Component

As noted before, the set of related components that form a cluster share a common

architectural style at their cluster LIFs. This means that property mismatches
among LIF-cluster messages are rare.

This is in contrast to the messages that cross a gateway component. These

messages come from two different worlds that are characterized by two different

architectural styles. Property mismatches, syntactic incompatibility, incoherent

naming, and differences in representation between these two sets of messages are

the rule rather than the exception. It is the main task of a gateway component to

translate the architectural style of one world to the architectural style of the other

world without changing the semantic content of the message variables.

There are situations when the architectural styles of the two interfacing worlds

are based on a different conceptualization of reality. i.e., there are not only

differences in the names and the representations of the same concepts (as shown

in the example in Sect. 2.2.4), but the concepts themselves, i.e., the semantic

contents are dissimilar.

Viewed from a given cluster, the gateway component hides the details of the

external world (the local interface) from the standardized message formats within

the computational cluster and filters the incoming information: only the information

that is relevant for the operation of the cluster under consideration is exposed in the

form of cluster-standard messages at the cluster LIF of the gateway component.

An important special case of an external-world interface is a process I/O

interface, which establishes a link between the cyber world and the physical

world. Table 4.2 depicts some of the differences between the LIF messages and a

process control I/O interface to the physical plant.

Table 4.2 Characteristics of a LIF versus a local process I/O interface

Characteristic Local process I/O interface LIF message interface

Information

Representation

Unique, determined by the given

physical interface device

Uniform within the whole cluster

Coding Analog or digital, unique Digital, uniform codes

Time-base Dense Sparse

Interconnection

Pattern

One-to-one One-to-many

Coupling Tight, determined by the specific

hardware requirements and the

I/O protocol of the connected

device

Weaker, determined by the LIF

message communication

protocol
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Example: In the external world of a process plant the value of the process variable

temperature may be coded in an analog 4–20 mA sensor signal, where 4 mA means 0%

and 20 mA means 100% of the selected measurement range, i.e., between 0� and 100�C.
This analog representation must be converted to the standard representation of temperature

that has been defined in the architectural style of the given cluster, which might be degrees

Kelvin.

Example: Let us look at an important interface, the man–machine interface (MMI), in

order to distinguish between the local interface and the LIF message interface of a gateway
MMI component (Fig. 4.8). At the level of architectural modeling, we are not interested in

the representational details of the local external world interface, but only in the semantic
content and temporal properties of the message variables at the LIF message interface. An
important message is sent to the MMI component. It is somehow relayed to the operator’s

mind. A response message from the operator is expected within a given time interval at the

LIF message interface. All intricate issues concerning the representation of the information

at the graphic user interface (GUI) of the operator terminal are irrelevant from the point of

view of architecture modeling of the interaction patterns between the operator and the

cluster. If the purpose of our model were the study of human factors governing the specific

man–machine interaction, then the form and attributes of the information representation at

the GUI (e.g., shape and placement of symbols, color, and sound) would be relevant and

could not be disregarded.

A gateway component can link two different clusters that have been designed by

two different organizations using two different architectural styles. Which one of

the two interfaces of such a gateway component is considered the LIF and which

one is the local interface depends on the view taken. As already mentioned, if we

change the view, the LIF becomes the local interface and the local interface

becomes the LIF.

4.5.3 Standardized Message Interface

To improve the compatibility between components designed by different manufac-

turers, to enhance the interoperability of devices, and to avoid property mismatches,

some international standard organizations have attempted to standardize message

interfaces. An example of such a standardization effort is the SAE J 1587 Message

Specification. The Society of Automotive Engineers (SAE) has standardized

input message

important incoming message

reaction message

cluster LIF
standardized messages

man-machine interface
(view, sound)

Fig. 4.8 Standardized LIF

versus concrete MMI
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themessage formats for heavy-duty vehicle applications in the J 1587 Standard. This

standard defines message names and parameter names for many data elements that

occur in the application domain of heavy vehicles. Besides data formats, the range of

the variables and the update frequencies are also covered by the standard.

4.6 Linking Interface Specification

As noted in Sect. 4.1.1, the timed sequence of messages that a component exchanges

across an interface with its environment defines the behavior of the component at

that interface [Kop03]. The interface behavior is thus determined by the properties

of all messages that cross an interface. We distinguish three parts of an interface

specification: (1) the transport specification of the messages, (2) the operational
specification of the messages, and the (3) the meta-level specification of the

messages.

The transport specification describes all properties of a message that are needed

to transport the message from the sender to the receiver(s). The transport specifica-

tion covers the addressing and temporal properties of a message. If two components

are linked by a communication system, the transport specification suffices to

describe the requested services from the communication system. The communica-

tion system is agnostic about the contents of the data field of a message. For the

communication system is does not matter whether the data field contains multime-

dia data, such as voice or video, numerical data or any other data type.

Example: The Internet provides a defined message transport service between two end

systems, not knowing what types of digital data are transported.

In order to be able to interpret the data field of a message at the end points of the

communication, we need the operational and the meta-level specification. The
operational specification informs about the syntactic structure of the message that

is exchanged across the LIF and establishes the message variables. Both, the
transport and the operational specification must be precise and formal to ensure

the syntactic interoperability of components. The meta-level specification of a LIF

assigns meaning to the message variable names introduced by the operational

specification. It is based on an interface model of the user environment. Since it

is impossible to formalize all aspects of a real-world user environment, the meta-

level specification will often contain natural language elements, which lack the

precision of a formal system. Central concepts of the application domains and

applications can be specified using domain specific ontologies.

4.6.1 Transport Specification

The transport specification contains the information needed by the communication

system to transport a message from a sender to the receiver(s). An interface contains
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a number of ports where the messages destined for this interface arrive or where

messages are placed for sending. The following attributes must be contained in the

transport specification:

l Port address and direction
l Length of the data field of the message
l Type of message (e.g., time-triggered or event-triggered or data stream)
l Cycle of a time-triggered message
l Queue depth for an event-triggered message or a data stream

It is a design decision whether these attributes are linked with the message or are

associated with the port where the message is handled.

As noted above, the transport specification must contain the information about

the temporal properties of a message. For time-triggered messages, the temporal

domain is precisely specified by the cycle that is associated with every time-

triggered message. For event-triggered messages, the temporal specification is

more difficult, particularly if event-triggered messages can arrive in bursts. In the

long run, the message arrival rate must not be larger than the message consumption

rate by the receiver, since an event-triggered message must conform to the exactly
once semantics (see Sect. 4.3.3). In the short run, an arriving message burst can be

buffered in the receiver queue until the queue is full. The specification of the proper

queue length for bursty event-triggered messages is very important.

4.6.2 Operational Specification

From the point of view of communication, the data field of an arriving message can

be considered as an unstructured bit vector.At the endpoints of the communication,

the operational specification determines how this bit vector must be structured into

message variables. A message variable is a syntactic unit that consists of a fixed

part and a variable part (see Sect. 2.2.4). The information about how the data field of

a message is structured in syntactic units is contained in a message-structure
declaration (MSD). The MSD contains the message variable names (i.e., the

fixed part of the message variable) that point to the relevant concepts on one

side and, on the other side, specifies which part of the unstructured bit vector

denotes the value (the variable part) of a message variable. In addition to the

structure information, the MSD may contain input assertions for checking the

validity of incoming data (e.g., to test if the data is within a permitted data domain

that the receiving component is capable to handle) and output assertions for

checking outgoing data. An incoming data element that passes the input assertion

is called a permitted data element. An outgoing data element that passes the output

assertion is called a checked data element. The formalism used for specifying

the data structures and the assertions in the MSD depends on the available

programming environment.
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In many real-time systems the MSD is static, i.e., it does not change over the

lifetime of the system. In these systems, for performance reasons, the MSD is not

transmitted in the message but stored in the memories of the communicating

partners where the data fields must be handled.

The link between the unstructured bit vector arriving at a port and the associated
MSD can be established by different means:

l The MSD name is assigned to the input port name. In this case only a single

message type can be accepted at a port.
l TheMSD name is contained in the data field of the message. In this case different

message types can be received at the same port. This approach is followed in

CAN, (see Sect. 7.3.2).
l The MSD name is assigned to the cyclic arrival instant of a time-triggered

message. In this case different message types can be received at the same port,

without the need to store the MSD name in the data field of the message. This

approach is followed in TTP see Sect. 7.5.1.
l The MSD name is stored in a server that can be accessed by the receiver of a

message. This approach is followed in CORBA [Sie00].
l The MSD itself is part of the message. This is the most flexible arrangement, at

the cost of having to send the full MSD in every message. This approach is

followed in service-oriented architectures (SOA) [Ray10].

4.6.3 Meta-Level Specification

The meta-level LIF specification assigns a meaning to the message variables

exchanged between two communicating LIFs at the operational level and thus

establishes semantic interoperability. It thus bridges the gap between the syntactic

units and the user’s mental model of the service provided at the interface. Central to

this meta-level specification is the LIF service model. The LIF service model

defines the concepts that are associated with the message variable names contained
in the operational specification. These concepts will be qualitatively different for

closed components and open components (see Sect. 4.4.5).
The LIF service model for a closed component can be formalized, since a closed

component does not interact with the external environment. The relationship

between the LIF inputs and LIF outputs depends on the discrete algorithms imple-

mented within the closed component. There is no input from the external environ-

ment that can bring unpredictability into the component behavior. The sparse

time-base within a cluster is discrete and supports a consistent temporal order of

all events.

The LIF service model for an open component is fundamentally different since it

must encompass the inputs from the external environment, the local interfaces of

the component in its interface specification. Without knowing the context of use of
an open component, only the operational specification of an open component can be
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provided. Since the external physical environment is not rigorously definable, the

interpretation of the external inputs depends on human understanding of the natural

environment. The concepts used in the description of the LIF service model must

thus fit well with the accustomed concepts within a user’s internal conceptual
landscape (see Sect. 2.2); otherwise the description will not be understood.

The discussion that follows focuses on LIFs of open components, since the

systems we are interested in must interact with the external environment. The LIF

service model of an open component must meet the following requirements:

l User orientation. Concepts that are familiar to a prototypical user must be the

basic elements of the LIF service model. For example, if a user is expected to

have an engineering background, terms and notations that are common knowl-
edge in the chosen engineering discipline should be used in presenting the

model.
l Goal orientation. A user of a component employs the component with the intent

to achieve a goal, i.e., to contribute to the solution of her/his problem. The

relationship between user intent and the services provided at the LIF must be

exposed in the LIF service model.
l System view. A LIF service user (the system architect) needs to consider the

system-wide effects of an interaction of the component with the external physi-

cal environment, i.e., effects that go beyond the component. The LIF service

model is different from the model describing the algorithms implemented within

a component, since these algorithms are within the component’s boundaries.

Example: Let us analyze the simple case of a variable that contains a temperature. As any

variable, it consists of the two parts, the static variable name and the dynamic variable
value. The MSD contains the static variable name (let us assume the variable is named

Temperature-11) and the position where the dynamic variable value is placed in an

arriving bit stream of the message. The meta-level specification explains the meaning of

Temperature-11 (see also the examples in Sect. 2.2.4).

4.7 Component Integration

A component is a self-contained validated unit that can be used as a building block

in the construction of larger systems. In order to enable a straightforward composi-

tion of a component into a cluster of components, the following four principles of
composability should be observed.

4.7.1 Principles of Composability

1. Independent Development of Components: The architecture must support the

precise specification of the linking interface (LIF) of a component in the domains
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of value and time. This is a necessary prerequisite for the independent development

of components on one side and the reuse of existing components that is based solely

on their LIF specification on the other side. While the operational specification of

the value domain of interacting messages is state-of-the-art in embedded system

design, the temporal properties of these messages are often ill defined.Many of the

existing architectures and specification technologies do not deal with the temporal

domain with the appropriate care. Note that the transport specification and the

operational LIF specification are independent of the context of use of an open

component, while the meta-level LIF specification of an open component depends

on the context of use. Interoperability of open components is thus not the same as

interworking of open component, since the latter assumes the compatibility of the

meta-level specifications.

2. Stability of Prior Services: The stability of prior services principle states that

the services of a component that have been validated in isolation (i.e., prior to

the integration of the component into the larger system) remain intact after the

integration (see the example in Sect. 4.4.1).

3. Non-Interfering Interactions: If there exist two disjoint subgroups of cooperat-

ing components that share a common communication infrastructure, then the

communication activities within one subgroup must not interfere with the

communication activities within the other subgroup. If this principle is not

satisfied, then the integration within one component-subgroup will depend on

the proper behavior of the other (functionally unrelated) component-subgroups.

These global interferences compromise the composability of the architecture.

Example: In a communication system where a single communication channel is shared by

all components on a first-come first-serve basis, a critical instant is defined as an instant,

when all senders start sending messages simultaneously. Let us assume that in such a

system ten components are to be integrated into a cluster. A given communication system is

capable to handle the critical instant if eight components are active. As soon as the ninth

and tenth component are integrated, sporadic timing failures are observed.

4. Preservation of the Component Abstraction in the Case of Failures: In a

composable architecture, the introduced abstraction of a component must

remain intact, even if a component becomes faulty. It must be possible to

diagnose and replace a faulty component without any knowledge about the

component internals. This requires a certain amount of redundancy for error

detection within the architecture. This principle constrains the implementation

of a component, because it restricts the implicit sharing of resources among

components. If a shared resource fails, more than one component can be affected

by the failure.

Example: In order to detect a faulty component that acts like a babbling idiot, the
communication system must contain information about the permitted temporal behavior

of every component. If a component fails in the temporal domain, the communication

system cuts off the component that violates its temporal specification, thus maintaining the

timely communication service among the correct components.
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4.7.2 Integration Viewpoints

In order to bring an understandable structure into a large system, it makes sense to

view – as seen from an integration viewpoint – a (original) cluster of components as

a single gateway component. The integration viewpoint establishes a new cluster

that consists of the respective gateway components of the original clusters. Viewed

from an original cluster, the external (local) interface of the gateway become the

LIFs of the new cluster, while, viewed from the new cluster, the LIF of the gateway

to the original cluster is the local interface of the new cluster (see Sect. 4.5.2). The

gateways to the new cluster make only those information items available to the new

cluster that are of relevance for the operation of the new cluster.

Example: Figure 4.1 depicts a cluster of components that form the control system within

an automobile. The vehicle-to-vehicle gateway component (the right lower component in

Fig. 4.1) establishes a wireless link to other vehicles. In this example, we distinguish the

following two levels of integration: (1) the integration of components into the cluster

depicted in Fig. 4.1 and (2) the integration of a car into a dynamic system of cars that is
achieved via the car-to-car (C2C) gateway component. If we look at the integration of

components within the cluster of Fig. 4.1, then the communication network interface (CNI)

of the C2C gateway component is the cluster LIF. From the C2C communication view-

point, the cluster LIF is the (unspecified) local interface of the C2C gateway component

(see also the last paragraph of Sect. 4.5.2).

The hierarchical composition of components and clusters that leads to distinct
integration levels is an important special case of the integration of components.

Multi-levelness is an important organizing principle in large systems. At the lowest

integration level primitive components (i.e., components that are considered to be

atomic units and are not composed any further) are integrated to form a cluster. One

distinct component of this cluster is a gateway component that forms, together with

distinct gateway components of other clusters a higher level cluster. This process of
integration can be continued recursively to construct a hierarchical system with

distinct levels of integration (see also Sect. 14.2.2 on the recursive integration of

components in the time-triggered architecture).

Example: In the GENESYS [Obm09, p. 44] architecture, three integration levels are

introduced. At the lowest level, the chip level, the components are IP cores of an MPSoC

that interact by a network on chip. At the next higher level, chips are integrated to form a

device. At the third integration level devices are integrated to form closed or open systems.

A closed system is a system in which the subsystems that form the systems are known a
priori. In an open system subsystems (or devices) join and leave the system dynamically,

leading to a system-of-systems.

4.7.3 System of Systems

There are two reasons for the rising interest in systems-of-systems: (1) the realiza-
tion of new functionality and (2) the control of the complexity growth of large
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systems caused by their continuous evolution. The available technology (e.g., the

Internet) makes it possible to interconnect independently developed systems (legacy
systems) to form new system-of-systems (SoS). The integration of different legacy
systems into an SoS promises more efficient economic processes and improved

services.

The continuous adaptations and modifications that are necessary to keep the

services of a large system relevant in a dynamic business environment brings about

a growing complexity that is hard to manage in a monolithic context [Leh85]. One

promising technique to attack this complexity problem is to break a single large

monolithic system up into a set of nearly autonomous constituent systems that are

connected by well-defined message interfaces. As long as the relied-upon properties
at these message interfaces meet the user intentions, the internal structure of the

constituent systems can be modified without any adverse effect on the global system

level services. Any modification of the relied-upon properties at the message inter-

faces is carefully coordinated by a coordination-entity that monitors and coordinates

the system evolution. The SoS technology is thus introduced to get a handle on the

complexity growth, caused by the necessary evolution of large systems, by introdu-

cing structure and applying the simplification principles of abstraction, separation of
concerns, and observability of subsystem interactions (see Sect. 2.5).

The distinction between a system of sub-systems and a system of systems is thus
based on the degree of autonomy of the constituent systems [Mai98]. We call a

monolithic system made out of subsystems that are designed according to a master

plan and are in the sphere of control of a single development organization a system
of sub-system. If the systems that cooperate are in the sphere of control of different
development organization we speak of a system of (constituent) systems. Table 4.3
compares the different characteristics of a monolithic system versus a system of
systems. The interactions of the autonomous constituent systems can evoke planned

or unanticipated emergent behavior, e.g., a cascade effect [Fis06], that must be

detected and controlled (see also Sect. 2.4).

In many distributed real-time applications it is not possible to bring temporally
accurate real-time information to a central point of control within the available

time interval between the observation of the local environment and the need to

control the local environment. In these applications central control by a monolithic

control system is not possible. Instead, the autonomous distributed controllers must

cooperate to achieve the desired effects.

Example: It is not possible to control the movement of the cars in an open road system,

where cyclists and pedestrians interfere with the traffic flow of the cars, by a monolithic

central control system because the amount and timeliness of the real-time information that

must be transported to and processed by the central control system is not manageable within

the required response times. Instead, each car performs autonomous control functions and

cooperates with other cars in order to maintain an efficient flow of traffic. In such a system a

cascade effect of a traffic jam can occur due to emergent behavior if the traffic density

increases beyond a tipping point.

Any ensemble of constituent systems that form an SoS must agreed on a shared

purpose, a chain of trust, and a shared ontology on the semantic level. These global

4.7 Component Integration 105



properties must be established at the meta-level and are subject of a carefully

managed continuous evolution. A new entity must be established at the meta-

level that monitors and coordinates the activities of the constituent systems in

order that the shared purpose can be achieved.

An important characteristic of an SoS is the independent development and

uncoordinated evolution of the constituent systems (Table 4.3). The focus in SoS

design is on the linking interface behavior of the monolithic systems. The mono-

lithic system themselves can be heterogeneous. They are developed according to

different architectural styles by different organizations. If the monolithic systems

are interconnected via open communication channels, then the topic of security is of

utmost concern, since an outside attacker can interfere with the system operation,

e.g., by executing a denial-of-service attack (see Sect. 6.2.2).

[Sel08, p. 3] discusses two important properties of an evolutionary architecture:
(1) The complexity of the overall framework does not grow as constituent systems

are added or removed and (2) a given constituent system does not have to be

reengineered if other constituent systems are added, changed, or removed. This

implies a precise specification and continuous revalidation of the relied upon

interface properties (in the domains of value and time) of the constituent systems.

The evolution of a constituent system will have no adverse effect on the overall

behavior if the relied-upon interface properties of this constituent system are

Table 4.3 Comparison of a monolithic system and a system of systems

Monolithic system System of systems (SoS)

Sphere of control and system responsibility

within a single development organization.

Subsystems are obedient to a central

authority.

Constituent systems are in the sphere of control

of different development organizations.

Subsystems are autonomous and can only be

influenced, but not controlled, by other

subsystems.

The architectural styles of the subsystems are

aligned. Property mismatches are the

exception.

The architectural styles of the constituent

systems are different. Property mismatches

are the rule, rather than the exception.

The LIFs that effectuate the integration are

controlled by the responsible system

organization.

The LIFs that effectuate the integration are

established by international standard

organizations and outside the control of a

single system supplier.

Normally hierarchical composition that leads

to levels of integration.

Normally the interactions among the constituent

systems follow a mesh network structure

without clear integration levels.

Subsystems are designed to interact in order

to achieve the system goal: Integration.
Constituent systems have their own goals that

are not necessarily compatible with the SoS

goal. Voluntary cooperation of systems to

achieve a common purpose: Interoperation.

Evolution of the components that form the

subsystems is coordinated.

Evolution of the constituent systems that form

the SoS is uncoordinated.

Emergent behavior controlled. Emergent behavior often planned, but

sometimes unanticipated.
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not modified. Since the precise specification of the temporal dimension of the

relied-upon interface properties requires a time-reference, the availability of a syn-

chronized global time in all constituent systems of a large SoS is helpful, leading to a

time-aware architecture (TAA, see Sect. 14.2.5). Such a global time can be estab-

lished by reference to the global GPS signals (see Sect. 3.5). We call an SoS where all

constituent systems have access to a synchronized global time a time-aware SoS.
The preferred interconnection medium for the construction of systems of systems

is the Internet, leading to the Internet of Things (IoT). Chapter 13 is devoted to the

topic of the Internet of Things.

Points to Remember

l A real-time component consists of a design (e.g., the software), an embodiment
(e.g., the hardware, including a processing unit, memory, and an I/O interface),

and a real-time clock that makes the component aware of the progression of

real-time.
l The timed sequence of output messages that a component produces at an

interface with its environment is the behavior of the component at that interface.

The intended behavior is called the service. An unintended behavior is called a

failure.
l Temporal control is concerned with determining the instants in the domain of

real time when tasks must be activated while logical control is concerned with

the control flow within a task.
l Synchronous programming languages distinguish cleanly between temporal

control, which is related to the progression of real time, and logical control,

which is related to execution time.
l A cycle, characterized by its period and phase, is associated with every time-

triggered activity.
l At a given instant, the state of a component is defined as a data structure that

contains the information of the past that is relevant for the future operation of the

component.
l In order to enable the dynamic reintegration of a component into a running

system, it is necessary to design periodic reintegration instants into the behavior,
where the state at the reintegration instant is called the ground state of the

component.
l A message is an atomic data structure that is formed for the purpose of commu-

nication, i.e., data transmission and synchronization, among components.
l Event information conveys the difference of the previous state observation and

the current state observation. Messages that contain event information must

adhere to the exactly-once semantic.
l State messages support the principle of independence because sender and

receiver can operate at different (independent) rates and there is no danger of

buffer overflow.
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l In real-time systems, the information pull strategy should be followed whenever
possible.

l Elementary interfaces are inherently simpler than composite interfaces, because

there is no dependency of the behavior of the sender on the behavior of the receiver.
l The services of a component are offered at its cluster LIF to the other compo-

nents of the cluster. The cluster LIF is an operational message-based interface

that is relevant for the integration of components into the cluster. The detailed

structure, naming, and access mechanisms of the local interface of a component

is intentionally left unspecified at its cluster LIF.
l Every system is developed according to an architectural style, i.e., a set of adopted

rules and conventions for the conceptualization, representation of data, naming,

programming, interaction of components, semantics of the data, and many more.
l Whenever a communication channel links two systems developed by two different

organizations, it is highly probable that some of the properties of the messages that

are exchanged across this channel are in disagreement because of the differences in

architectural styles.
l A gateway component resolves property mismatches and exposes the external-

world information in the form of cluster-standard messages at the cluster LIF of

the gateway components.
l We distinguish between three parts of a LIF specifications: (1) the transport

specification of the messages (2) the operational specification of the messages

and the (3) the meta-level specification of the messages.
l Only the operational specification of an open component can be provided

without knowing the context of use of the open component.
l The information on how the data field of a message is structured into syntactic

units is contained in a message-structure declaration (MSD). The MSD estab-

lishes the message variable names (i.e., the fixed part of the message variable)

that point to the respective concepts and specify which part of the unstructured

bit vector denotes the variable part of a message variable.
l The four principles of composability are (1) independent development of com-

ponents, (2) stability of prior services, (3) non-interfering interactions, and (4)

preservation of the component abstraction in case of failures.
l Multi-levelness is an important organizing principle in large systems.
l The distinction between a system of sub-systems and a system of systems is based

more on organizational than on technical grounds.

Bibliographic Notes

The presented real-time model of computation has been developed over the past

25 years and is documented in a number of publications, starting with The Archi-
tecture of Mars [Kop85] and further in the following publications: Real-time Object
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Review Questions and Problems

4.1 How is a real-time system component defined? What are elements of a

component? How is the behavior of a component specified?

4.2 What are the advantages of separating computational components from

the communication infrastructure? List some of the consequences of this

separation.

4.3 What is the difference between temporal control and logical control?
4.4 What is the definition of the state of a real-time system? What is the relation-

ship between time and state? What is the ground state? What is a database

component?

4.5 What is the difference between event information and state information?
What is the difference in the handling of an event message from the handling

a state message?
4.6 List and describe the properties of the four interfaces of a component? Why

are the local interfaces of a component intentionally left unspecified at the

architectural level?

4.7 What are the differences between an information push interface and an

information pull interface? What are the differences between an elementary
interface and a composite interface?

4.8 What do we mean by the term architectural style? What is a property
mismatch?

4.9 What are the characteristics of a local process I/O interface and the LIF

message interface?

4.10 What is the role of a gateway component?

4.11 What are the three parts of a linking interface specification?

4.12 What is the message-structure declaration (MSD)? How do we associate the

MSD with the bit-vector contained in a message?

4.13 List the four principles of composability?
4.14 What is an integration level? How many integration levels are introduced in

the GENESYS architecture?

4.15 Assume that the pressures p1 and p2 between the first two pairs of rolls in

Fig. 1.9 are measured by the two controller nodes and sent to the man–ma-

chine interface (MMI) node for verifying the following alarm condition:

whenðp1<p2Þ
then everything ok
else raise pressure alarm;

The rolling mill is characterized by the following parameters: maximum

pressure between the rolls of a stand ¼ 1,000 kp cm�2 [kp is kilopond],

absolute pressure measurement error in the value domain ¼ 5 kp cm�2, max-

imum rate of change of the pressure ¼ 200 kp cm�2 s�1. It is required that the

error due to the imprecision of the points in time when the pressures are

measured at the different rolls should be of the same order of magnitude as the
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measurement error in the value domain, i.e., 0.5% of the full range. The

pressures must be continuously monitored, and the first alarm must be raised

by the alarm monitor within 200 ms (at the latest) after a process has possibly

left the normal operating range. A second alarm must be raised within 200 ms

after the process has definitely entered the alarm zone.

1. Assume an event-triggered architecture. Each node contains a local real-

time clock, but no global time is available. The minimum time dmin for the
transport of a single message by the communication system is 1 ms. Derive

the temporal control signals for the three tasks.

2. Assume a time-triggered architecture. The clocks are synchronized with a

precision of 10 ms. The time-triggered communication system is character-

ized by a TDMA round of 10 ms. The time for the transport of a single

message by the communication system is 1 ms. Derive the temporal

control signals for the three time-triggered tasks.

3. Compare the solutions of 4.16.(a) and 4.16.(b) with respect to the gener-

ated computational load and the load on the communication system. How

sensitive are the solutions if the parameters, e.g., the jitter of the commu-

nication system or the duration of the TDMA round, are changed?
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Chapter 5

Temporal Relations

Overview The behavior of a real-time cluster must be based on timely information

about the state of its physical environment and the state of other cooperating

clusters. Real-time data is temporally accurate for a limited real-time interval

only. If real-time data is used outside this application specific time interval, the

system will fail. It is the objective of this chapter to investigate the temporal

relations among state variables in the different parts of a cyber-physical system.

In this chapter, the notions of a real-time (RT) entity, a real-time (RT) image, and
a real-time (RT) object are introduced and the concept of temporal validity of an RT
image is established. The temporal validity of the RT image can be extended by

state estimation. A real-time clock is associated with every RT object. The object’s

clock provides periodic temporal control signals for the execution of the object

procedures, particularly for state estimation purposes. The granularity of the RT

object’s clock is aligned with the dynamics of the RT entity in the controlled object

that is associated with the RT object. The notions of parametric and phase-sensitive

observations of RT entities are introduced, and the concept of permanence of an

observation is discussed. The duration of the action delay, which is the time interval

between the transmission of a message and the instant when this message becomes

permanent, is estimated.

The final section of this chapter is devoted to an elaboration of the concept of

determinism. Determinism is a desired property of a computation that is needed if

fault-tolerance is to be achieved by the replication of components. Determinism is

also helpful for testing and for understanding the operation of a system. A set of
replicated RT objects is replica determinate if the objects visit the same state at

approximately the same future point in time. The main causes for a loss of

determinism are failures that the fault-tolerance mechanisms are intended to mask

and non-deterministic design constructs which must be avoided in the design of

deterministic systems.

H. Kopetz, Real-Time Systems: Design Principles for Distributed Embedded Applications,
Real-Time Systems Series, DOI 10.1007/978-1-4419-8237-7_5,
# Springer Science+Business Media, LLC 2011
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5.1 Real-Time Entities

A real-time (RT ) entity is a state variable of relevance for the given purpose. It is

located either in the environment of the computer system or in the computer system

itself. Examples ofRT entities are the flowof a liquid in a pipe, the setpoint of a control

loop that is selected by the operator, or the intended position of a control valve. An

RT entity has static attributes that do not change during the lifetime of the RT entity,

and dynamic attributes that change with the progression of real-time. Examples of

static attributes are the name, the type, the value domain, and the maximum rate of

change. The value set at a particular instant is the most important dynamic attribute.

Another example of a dynamic attribute is the rate of change at a chosen instant.

5.1.1 Sphere of Control

Every RT entity is in the sphere of control (SOC) of a subsystem that has the

authority to set the value of the RT entity [Dav79]. Outside its SOC, the RT entity

can only be observed, but the semantic content of the RT entity cannot be modified.

At the chosen level of abstraction, syntactic transformations of the representation of

the value of an RT entity that do not change its semantic content (see Sect. 2.2.4) are
disregarded.

Example: Figure 5.1 shows another view of Fig. 1.8 and represents the small control

system that controls the flow of a liquid in a pipe according to a setpoint selected by the

operator. In this example, there are three RT entities involved: the flow in the pipe is in

the SOC of the controlled object, the setpoint for the flow is in the SOC of the operator, and

the intended position of the control valve is in the SOC of the computer system.

5.1.2 Discrete and Continuous Real-Time Entities

An RT entity can have a discrete value set (discrete RT entity) or a continuous

value set (continuous RT entity). If the timeline proceeds from left to right, then the
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Fig. 5.1 RT entities, RT images, and RT objects
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value set of a discrete RT entity is constant during an interval that starts with a left

event (L_event) and ends with a right event (R_event) – see Fig. 5.2.

In the interval between an R_event and the next L_event, the set of values of a

discrete RT entity is undefined. In contrast, the set of values of a continuous RT

entity is always defined.

Example: Consider a garage door. Between the defined states specified by door closed and
door open, there are many intermediate states that can be classified neither as door open nor
as door closed.

5.2 Observations

The information about the state of an RT entity at a particular instant is captured by

the notion of an observation. An observation is an atomic data structure

Observation ¼ <Name; tobs; Value>

consisting of the name of the RT entity, the instant when the observation was made

(tobs), and the observed value of the RT entity. A continuous RT entity can be observed

at any instant while the observation of a discrete RT entity gives a meaningful value

only in the interval between a L_event and an R_event (see Fig. 5.2).
We assume that an intelligent sensor node is associated with a physical sensor to

capture the physical signal, to generate the timestamp, and to transform the physical

signal to meaningful digital technical units. An observation should be transported in

a single message from this sensor node to the rest of the system because the

message concept provides for the needed atomicity of an observation message.

5.2.1 Untimed Observation

In a distributed system without global time, a timestamp can only be interpreted

within the scope of the node that created the timestamp. The timestamp of a sender

that made an observation is thus meaningless at the receiver of the observation

message if no global time is available. Instead, the time of arrival of an untimed

observation message at the receiver node is often taken to be the time of observation

tobs. This timestamp is imprecise because of the delay and the jitter between the

observations

0
1

state

L R
L R

real-time

Fig. 5.2 Discrete RT entity
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instant of observation and the arrival instant of the message at its destination. In a

system with a significant jitter of the execution time of the communication protocol

(in comparison to the median execution time) and without access to a global time-

base it is not possible to determine the instant of observation of an RT entity

precisely. This imprecision of time measurement can reduce the quality of the

observation (see Fig. 1.6).

5.2.2 Indirect Observation

In some situations, it is not possible to observe the value of an RT entity directly.

Consider, for example, the measurement of the internal temperature within a slab of

steel. This internal temperature (the value of the RT entity) must be measured

indirectly.

The three temperature sensors T1, T2, and T3 measure the change of temperature

of the surface (Fig. 5.3) over a period of time. The value of the temperature T within

the slab and the instant of its relevance must be inferred from these surface

measurements by using a mathematical model of heat transfer.

5.2.3 State Observation

An observation is a state observation if the value of the observation contains the

state of the RT entity. The time of the state observation refers to the point in real-

time when the RT entity was sampled (observed). Every reading of a state observa-

tion is self-contained because it carries an absolute value. Many control algorithms

require a sequence of equidistant state observations, a service provided by periodic

time-triggered readings.

The semantics of state observations matches well with the semantics of the state

messages introduced in Sect. 4.3.4. A new reading of a state observation replaces

the previous readings because clients are normally interested in the most recent

value of a state variable.

5.2.4 Event Observation

An event is an occurrence (a state change) that happens at an instant. Because an

observation is also an event, it is not possible to observe an event in the controlled

temperature T

T1 T2 T3

Fig. 5.3 Indirect

measurement of an RT entity
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object directly. It is only possible to observe the consequences of the controlled
object’s event (Fig. 5.4), i.e., the subsequent state. An observation is an event
observation if it contains the change in value between the old and the new states.

The instant of the event observation denotes the best estimate of the instant of the

occurrence of this event. Normally, this is the time of the L-event of the new state.

There are a number of problems with event observations:

1. Where do we get the precise time of the event occurrence? If the event observa-

tion is event-triggered, then, the time of event occurrence is assumed to be the

rising edge of the interrupt signal. Any delayed response to this interrupt signal

will cause an error in the timestamp of the event observation. If the event

observation is time-triggered, then, the time of event occurrence can be at any

point within the sampling interval.

2. Since the value of an event observation contains the difference between the

old state and the new state (and not the absolute state), the loss or duplication of

a single event observation causes the loss of state synchronization between the

state of the observer and the state of the receiver. From the point of view of

reliability, event observations are more fragile than state observations.

3. An event observation is only sent if the RT entity changes its value. The latency

for the detection of a failure (e.g., a crash) of the observer node cannot be

bounded because the receiver assumes that the RT entity has not changed its

value if no new event message arrives.

On the other hand, event observations are more data-efficient than state observa-

tions in the case where the RT entity does not change frequently.

5.3 Real-Time Images and Real-Time Objects

5.3.1 Real-Time Images

A real-time (RT) image is a current picture of an RT entity. An RT image is valid at
a given instant if it is an accurate representation of the corresponding RT entity,

both in the value and the time domains. The notion of temporal accuracy of an RT

image will be discussed in detail in the next section. While an observation records a

fact that remains valid forever (a statement about an RT entity that has been

observed at a particular instant), the validity of an RT image is time-dependent

controlled object
event occurence

point of observation of
the event occurence

real-time

Fig. 5.4 Observation of an

event
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and thus invalidated by the progression of real-time. RT images can be constructed

from up-to-date state observations or from up-to-date event observations. They can

also be estimated by a technique called state estimation that will be discussed in

Sect. 5.4.3. RT images are stored either inside the computer system or in the

environment (e.g., in an actuator).

5.3.2 Real-Time Objects

A real-time (RT) object is a container within a node of the distributed computer

system that holds an RT image or an RT entity [Kop90]. A real-time clock with a

specified granularity is associated with every RT object. Whenever this object clock

ticks, a temporal control signal is relayed to the object to activate an object

procedure [Kim94].

Distributed RT Objects. In a distributed system, an RT object can be replicated in

such a manner that every local site has its own version of the RT object to provide

the specified service to the local site. The quality of service of a distributed RT

object must conform to some specified consistency constraints.

Example: A good example of a distributed RT object is global time; every node has a local
clock object that provides a synchronized time service with a specified precisionP (quality

of service attribute of the internal clock synchronization). Whenever a process reads its

local clock, it is guaranteed that a process running on another node that reads its local clock

at the same instant will get a time value that differs by at most one tick.

Example: Another example of a distributed RT object is a membership service in a

distributed system. A membership service generates consistent information about the

state (operational or failed) of all nodes of the system at agreed instants (membership
points). The length and the jitter of the interval between a membership point and the instant

when the consistent membership information is known at the other nodes are quality of
service parameters of the membership service. A responsive membership service has a

small maximum delay between the instant of a relevant state change of a node (failure or

join), and the instant at which all other nodes have been informed in a consistent manner of

this state change.

5.4 Temporal Accuracy

Temporal accuracy denotes the temporal relationship between an RT entity and its

associated RT image. Because an RT image is stored in an RT object, the temporal

accuracy can also be viewed as a relation between an RT entity and an RT object.

5.4.1 Definition

The temporal accuracy of an RT image is defined by referring to the recent history
of observations of the related RT entity. A recent history RHi at time ti is an ordered
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set of instants {ti,ti � 1,ti � 2, . . ., ti � k}, where the length of the recent history,

dacc ¼ z(ti ) � z(ti � k), is called the temporal accuracy interval or the temporal
accuracy dacc (z(e) is the timestamp of event e generated by the reference clock z;
see Sect. 3.1.2). Assume that the RT entity has been observed at every instant of the

recent history. An RT image is temporally accurate at the present time ti if

9 tj 2 RHi : Value ðRT image at tiÞ ¼ Value ðRT entity at tjÞ

The current value of a temporally accurate RT image is a member of the set of

observations in the recent history of the corresponding RT entity. Because the

transmission of an observation message from the observing node to the receiving

node takes some amount of time, the RT image lags behind the RT entity (see

Fig. 5.5).

Example: Let us assume, that the temporal accuracy interval of a temperature measure-

ment is 1 min. An RT-image is temporally accurate if the value contained in the RT image

has been observed at most a minute ago, i.e., it is still in the recent history of the

corresponding RT-entity.

Temporal Accuracy Interval. The size of the admissible temporal accuracy interval

dacc is determined by the dynamics of the RT entity in the controlled object. The

delay between the observation of the RT entity and the use of the RT image causes

an error(t) of the RT image that can be approximated by the product of the gradient

of the value v of the RT entity multiplied by the length of the interval between the

instant of observation and the instant of its use (see also Fig. 1.6):

errorðtÞ ¼ dvðtÞ
dt

ðzðtuseÞ � zðtobsÞÞ

If a temporally valid RT image is used, the worst-case error,

error ¼ max
8t

dvðtÞ
dt

dacc

� �
;

is given by the product of the maximum gradient and the temporal accuracy dacc. In
a balanced design, this worst-case error caused by the temporal delay is in the same

order of magnitude as the worst-case measurement error in the value domain and is

typically a fraction of a percentage point of the full range of the measured variable.

temporal accuracy interval

real-time

va
lu

e

Fig. 5.5 Time lag between

RT entity and RT image
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If the RT entity changes its value quickly, a short accuracy interval must be

maintained. Let us call tuse the instant when the result of a computation using an RT

image is applied to the environment. For the result to be accurate, it must be based

on a temporally accurate RT image, i.e.:

zðtobsÞbzðtuseÞbðzðtobsÞ þ daccÞ
where dacc is the accuracy interval of the RT image. If this important condition is

transformed, it follows that:

ðzðtuseÞ � zðtobsÞÞbdacc:

Phase-Aligned Transaction. Consider the case of an RT transaction consisting of

the following phase synchronized tasks: the computational task at the sender

(observing node) with a worst-case execution time WCETsend, the message trans-

mission with a worst-case communication delay WCCOM, and the computational

task at receiver (actuator node) with a worst-case execution timeWCETrec (Fig. 5.6,
see also Fig. 3.9). Such a transaction is called a phase-aligned transaction.

In such a transaction, the worst-case difference between the point of observation

and the point of use,

ðtuse � tobsÞ ¼ WCETsend þWCCOM þWCETrec;

is given by the sum of the worst-case execution time of the sending task, the worst-

case communication delay, and the worst-case execution time of the receiving task

that uses the data in the output of a setpoint to the actuator in the controlled object.

If the temporal accuracy dacc that is required by the dynamics of the application

is smaller than this sum, the application of a new technique, state estimation, is
inevitable in solving the temporal accuracy problem. The technique of state esti-

mation is discussed in Sect. 5.4.3.

Example: Let us analyze the required temporal accuracy intervals of the RT images that

are used in a controller of an automobile engine (Table 5.1) with a maximum rotational

speed of 6,000 revolutions per minute (rpm). There is a difference of more than six orders

of magnitude in the temporal accuracy intervals of these RT images. It is evident that the

dacc of the first data element, namely the position of the piston within the cylinder, requires

the use of state estimation.

sending task WCET
communication

receiving task

point of observation

point of use
send

WCETrec

WCCOM

real-time
Fig. 5.6 Synchronized

actions
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5.4.2 Classification of Real-Time Images

Parametric RT Image. Assume that an RT image is updated periodically by a state

observation message from the related RT entity with an update period dupdate
(Fig. 5.7) and assume that the transaction is phase aligned at the sender. If the

temporal accuracy interval dacc satisfies the condition

dacc>ðdupdate þWCETsend þWCCOM þWCETrecÞ;
then we call the RT image parametric or phase insensitive.

A parametric RT image can be accessed at the receiver at any time without

having to consider the phase relationship between the incoming observation mes-

sage and the point of use of the data.

Example: The RT transaction that handles the position of the accelerator pedal (observa-

tion and preprocessing at sender, communication to the receiver, processing at the receiver

and output to the actuator) takes an amount of time:

WCETsend þWCCOM þWCETrec ¼ 4 ms:

Because the accuracy interval of this observation is 10 ms (Table 5.1), messages

sent with periods less than 6 ms will make this RT image parametric.
If components are replicated, then care must be taken that all replicas access the

same version of a parametric RT image, otherwise the replica determinism (see

Sect. 5.6) will be lost.

real-time

sending task WCET
communication

receiving task
points of 
observation

point of use
send

WCETrec

WCCOM

RT image of current cycle

RT image of next cycle

point of use of the RT
image of the current 
cycle may be any time
during this interval

daccof real-time image of current cycle

dupdate

Fig. 5.7 Parametric real-time image

Table 5.1 Temporal accuracy intervals in engine control

RT image within computer Max. change Accuracy dacc

Position of piston within cylinder 6,000 rpm 0.1� 3 ms
Position of accelerator pedal 100%/s 1% 10 ms

Engine load 50%/s 1% 20 ms

Temperature of the oil and the coolant 10%/min 1% 6 s

5.4 Temporal Accuracy 119



Phase-Sensitive RT Image: Assume an RT transaction that is phase-aligned at the

sender. The RT image at the receiver is called phase sensitive if

daccbðdupdate þWCETsend þWCCOM þWCETrecÞ
and

dacc>ðWCETsend þWCCOM þWCETrecÞ

In this case, the phase relationship between the moment at which the RT image is

updated, and the moment at which the information is used, must be considered.

In the above example, an update period of more than 6 ms, e.g., 8 ms, would make

the RT image phase sensitive.

Every phase-sensitive RT image imposes an additional constraint on the sched-

uling of the real-time task that uses this RT image. The scheduling of a task that

accesses phase-sensitive RT images is thus significantly more complicated than the

scheduling of tasks using parametric RT images. It is good practice to minimize the

number of RT images that are phase-sensitive. This can be done, within the limits

imposed by dupdate, by either increasing the update frequency of the RT image, or by

deploying a state-estimation model to extend the temporal accuracy of the RT

image. While an increase in the update frequency puts more load on the communi-

cation system, the implementation of a state-estimation model puts more load on

the processor. A designer has the choice to find a tradeoff between utilizing

communication resources and processing resources.

5.4.3 State Estimation

State estimation involves the building of a model of an RT entity inside an RT

object to compute the probable state of an RT entity at a selected future instant and

to update the corresponding RT image accordingly. The state estimation model is

executed periodically within the RT object that stores the RT image. The control

signal for the execution of the model is derived from the tick of the real-time clock

that is associated with the RT object (see Sect. 5.3.2). The most important future

instant where the RT image must be in close agreement with the RT entity is tuse, the
instant where the value of the RT image is used to deliver an output to the

environment. State estimation is a powerful technique to extend the temporal

accuracy interval of an RT image, i.e., to bring the RT image into better agreement

with the RT entity.

Example: Assume that the crankshaft in an engine rotates with a rotational speed of

3,000 rpm, i.e., 18�/ms. If the time interval between the instant of observation, tobs, of the
position of the crankshaft and the instant of use, tuse, of the corresponding RT image is

500 ms, we can update the RT image by 9� to arrive at an estimate of the position of the

crankshaft at tuse. We could improve our estimate if we also consider the angular accelera-

tion or deceleration of the engine during the interval [tobs, tuse].
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An adequate state estimation model of an RT entity can only be built if the

behavior of the RT entity is governed by a known and regular process, i.e., a well-

specified physical or chemical process. Most technical processes, such as the above-

mentioned control of an engine, fall into this category. However, if the behavior of

the RT entity is determined by chance events, then, the technique of state estimation

is not applicable.

Input to the State Estimation Model. The most important dynamic input to the state

estimation model is the precise length of the time interval [tobs, tuse]. Because tobs
and tuse are normally recorded at different nodes of a distributed system, a commu-

nication protocol with minimal jitter or a global time-base with a good precision is a

prerequisite for state estimation. This prerequisite is an important requirement in

the design of a field bus.

If the behavior of an RT entity can be described by a continuous and differentia-

ble function v(t), the first derivative dv/dt is sometimes sufficient in order to obtain a

reasonable estimate of the state of the RT entity at the instant tuse in the neighbor-

hood of the instant of observation:

vðtuseÞ � vðtobsÞ þ ðtuse � tobsÞdv = dt

If the precision of such a simple approximation is not adequate, a more elaborate

series expansion around tobs can be carried out. In other cases a more detailed

mathematical model of the process in the controlled object may be required. The

execution of such a mathematical model can demand considerable processing

resources.

5.4.4 Composability Considerations

Assume a time-triggered distributed system where an RT entity is observed by the

sensor node, and the observation message is then sent to one or more nodes that

interact with the environment. The length of the relevant time interval [tobs, tuse] is
thus the sum of the delay at the sender, given by the length [tobs, tarr], and the delay
at the receiver, given by the length [tarr, tuse], (the communication delay is sub-

sumed in the sender delay). In a time-triggered architecture, all these intervals are

static and known a priori (Fig. 5.8).

real-time

latency at sender dsend

latency at receiver drec

tarr tuse

point of
observation

point of
arrival

point of
usetobs

Fig. 5.8 Latency at sender

and receiver
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If the state estimation is performed in the RT object at the receiver, then any

modification in the delay at the sender will cause a modification of the time interval

that must be compensated by the state estimation of the receiver. The receiver

software must be changed if a latency change takes place inside the sender node. To

decrease this coupling between the sender and the receiver, the state estimation can

be performed in two steps: the sender performs a state estimation for the interval

[tobs, tarr] and the receiver performs a state estimation for the interval [tarr, tuse]. This
gives the receiver the illusion that the RT entity has been observed at the point of

arrival of the observation message at the receiver. The point of arrival is then the

implicit timestamp of the observation, and the receiver is not affected by a schedule

change at the sender. Such an approach helps to unify the treatment of sensor data

that are collected via a field bus as well as directly by the receiving node.

5.5 Permanence and Idempotency

5.5.1 Permanence

Permanence is a relation between a particular message arriving at a node and the set

of all related messages that have been sent to this node before this particular

message. A particular message becomes permanent at a given node at that point

in time when the node knows that all related messages that have been sent to it prior

to the send time of this message have arrived (or will never arrive) [Ver94].

Example: Consider the example of Fig. 5.9, where the pressure in a vessel is monitored by

a distributed system. The alarm-monitoring node (node A) receives a periodic message

MDA from the pressure-sensor node (node D). If the pressure changes abruptly for no

apparent reason, the alarm-monitoring node A should raise an alarm. Suppose that the

operator node B sends a message MBC to node C to open the control valve in order to

release the pressure. At the same time, the operator node B sends a message MBA to node A,

to inform node A about the opening of the valve, so that node A will not raise an alarm due

to the anticipated drop in pressure.

operator

alarm
monitor

pressure
sensor

hidden
channel

control valve
A

B

C

D

MDA

MBC

comm.
systemMBA

vessel

Fig. 5.9 Hidden channel in the controlled object
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Assume that the communication system has a minimum protocol execution time

dmin and a maximum protocol execution time dmax, i.e., a jitter djit ¼ dmax � dmin.
Then the situation depicted in Fig. 5.10 could occur. In this figure, the message

MDA from the pressure sensor node arrives at the alarm monitoring node A before

the arrival of the message MBA from the operator (that informs the alarm monitor-

ing node A of the anticipated drop in pressure). The transmission delay of the

hidden channel in the controlled object between the opening of the valve and the

changing of the pressure sensor is shorter than the maximum protocol execution

time. Thus, to avoid raising any false alarms, the alarm-monitoring node should

delay any action until the alarm message MDA has become permanent.

Action Delay. The time interval between the start of transmission of a given

message and the point in time when this message becomes permanent at the

receiver, is called the action delay. The receiver must delay any action on the

message until after the action delay has passed to avoid an incorrect behavior.

Irrevocable Action. An irrevocable action is an action that cannot be undone.

An irrevocable action causes a lasting effect in the environment. An example of an

irrevocable action is the activation of the firingmechanism on a firearm. It is particularly

important that an irrevocable action is triggered only after the action delay has passed.

Example: The pilot of a fighter aircraft is instructed to eject from the airplane (irrevocable

action) immediately after a critical alarm is raised. Consider the case where the alarm has

been raised by a message that has not become permanent yet (e.g., event 4 in Fig. 5.10). In

this example, the hidden channel, which was not considered in the design, is the cause for

the loss of the aircraft.

5.5.2 Duration of the Action Delay

The duration of the action delay depends on the jitter of the communication system

and the temporal awareness of the receiver (see also Table 7.2). Let us assume the

position of the omniscient outside observer who can see all significant events.
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Systems with a Global Time. In a system with global time, the send time tsend of the
message, measured by the clock of the sender, can be part of the message, and can

be interpreted by the receiver. If the receiver knows that the maximum delay of the

communication system is dmax, then, the receiver can infer that the message will

become permanent at tpermanent ¼ tsend + dmax + 2g, where g is the granularity of

the global time-base (see Sect. 3.2.4 to find out where the 2g comes from).

Systems without a Global Time. In a system without global time, the receiver does

not know when the message has been sent. To be on the safe side, the receiver must

wait dmax � dmin time units after the arrival of the message, even if the message has

already been dmax units in transit. In the worst case, as seen by the outside observer,
the receiver thus has to wait for an amount of time

tpermanent ¼ tsend þ 2dmax � dmin þ gl

before the message can be used safely (where gl is the granularity of the local time-

base). Since in an event-triggered communication system (dmax � dmin + gl ) is
normally much larger than 2g, where g is the granularity of the global time, a

system without a global time-base is significantly slower than a system with a

global time-base. (In this case, the implementation of a time-triggered communica-

tion system is not possible, since we operate under the assumption that no global

time base is available).

5.5.3 Accuracy Interval Versus Action Delay

An RT image may only be used if the message that transported the image is

permanent, and the image is temporally accurate. In a system without state

estimation, both conditions can only be satisfied in the time window (tpermanent,
tobs + dacc). The temporal accuracy dacc depends on the dynamics of the control

application while (tpermanent � tobs) is an implementation-specific duration. If an

implementation cannot meet the temporal requirements of the application, then,

state estimation may be the only alternative left in order to design a correct

real-time system.

5.5.4 Idempotency

Idempotency is the relationship among the members of a set of replicated messages

arriving at the same receiver. A set of replicated messages is idempotent if the effect
of receiving more than one copy of a message is the same as receiving only a single

copy. If messages are idempotent, the implementation of fault tolerance by means

of replicating messages is simplified. No matter whether the receiver receives one

or more of the replicated messages, the result is always the same.
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Example: Let us assume that we have a distributed system without synchronized clocks.

In such a system, only untimed observations can be exchanged among nodes, and the time

of arrival of an observation message is taken as the time of observation. Assume a node

observes an RT entity, e.g., a valve, and reports this observation to other nodes in the

system. The receivers use this information to construct an updated version of the local RT

image of the RT entity in their RT objects. A state message might contain the absolute value

position of valve at 45�, and will replace the old version of the image. An event message

might contain the relative value valve has moved by 5�. The contents of this event message

are added to the previous contents of the state variable in the RT object to arrive at an

updated version of the RT image. While the state message is idempotent, the event message

is not. A loss or duplication of the event message results in a permanent error of the

RT image.

5.6 Determinism

Determinism is a property of a computation that makes it possible to predict the

future result of a computation, given that the initial state and all timed inputs are
known. A given computation is either determinate or not determinate.

Example: Consider the case of a fault-tolerant brake-by-wire system in a car. After

agreement on the sensor inputs (e.g., brake pedal position, speed of the car, etc.), three

independent but synchronized channels process identical inputs. The three outputs are

presented to four smart voting actuators (Figs. 9.8 and 9.9), one at the brake-cylinder of

each one of the four wheels of the car. After the earliest possible arrival of a correct output

message at a voting actuator, an acceptance window is opened. The duration of the

acceptance window is determined by the differences in the execution speeds and the jitter

of the communication system of the three channels, provided they operate correctly. Every

correct deterministic channel will deliver the same result before the end of the acceptance

window. If one channel fails, one of the three arriving result messages will contain a value

that is different from the other two (value failure) or only two (identical) result messages will

arrive during the acceptance window (timing failure). By selecting the majority result at the

end of the acceptance window, the voter will mask a failure of any one of the three channels.

The end point of the acceptance window is the significant eventwhen the voting actions can
be performed and the result can be transmitted to the environment. If the computations and

the communication system have a large jitter, then this end point of the acceptance window

is far in the future and the responsiveness of the computer system is reduced.

5.6.1 Definition of Determinism

In Sect. 2.5 the principle of causality has been introduced. Causality refers to the

unidirectional relationship that connects an effect to a cause [Bun08]. If this

relationship is one of logical and temporal entailment, we speak of determinism,
which we define as follows: A physical system behaves deterministically if, given an
initial state at instant t and a set of future timed inputs, then the future states and the
values and times of future outputs are entailed. The words time and instants refer to
the progression of dense (physical) time. Many natural laws of physical systems

conform to this definition of determinism. In a digital computer model of a physical
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system there is no dense time. In a deterministic distributed computer system, we

must assume that all events, e.g., the observation of the initial state at instant t and

the timed inputs, are sparse events on a sparse global time base (see Sect. 3.3) in

order that the temporal properties of and the relations (such as simultaneity) among

the events that occur in the different nodes of the distributed system can be

precisely specified despite the finite precision of the clock synchronization and

the discrete time-base. This transformation of dense events in the physical world to

sparse events in the cyber world (the distributed computer system), performed by an

agreement protocol (see Sect. 3.3.1), reduces the faithfulness of the computer

model, since events that are closer than the granularity of the time-base cannot be

ordered consistently.

In a real-time context, the concept of determinism requires that the behavior of a

system is predictable in the domains of values and time. Neglecting the temporal

dimension leads to a reduced notion of determinism – we call it logical (L) determin-
ism. L-determinism can be defined as follows: A system behaves L-deterministically
if, given an initial state and a set of ordered inputs, then the subsequent states and
the values of subsequent outputs are entailed.

The use of the word determinism in everyday language relates the future

behavior of a system as a consequence of its present state. Since in a time-less

system the concept of future does not exist, L-determinism does not capture the

everyday meaning of the word determinism.

Example: In the above example of a braking system, it is not sufficient for the establish-

ment of correctness to demand that the braking action will eventually take place. The

maintenance of an upper real-time bound for the start of the braking action (the end point of

the acceptance window), e.g., that the braking action will start 2 ms after the brake pedal
has been pressed, is an integral part of correct behavior.

Deterministic behavior of a component is desired for the following reasons:

l An entailment relation between initial state, input, output and time simplifies the

understanding of the real-time behavior of the component (see also Sect. 2.1.1).
l Two replicated components that start from the same initial state and receive the

same timed inputs will produce the same results at about the same time. This

property is important if the results of a faulty channel are to be masked (out-

voted) by the correct results of two correct channels (see Sect. 6.4.2) as exem-

plified in the above example on the braking system of a car.
l The testability of the component is simplified, since every test case can be

reproduced, eliminating the appearance of spuriousHeisenbugs (see Sect. 6.1.2).

Determinism is a desired property of behavior. The implementation of a com-

putation will achieve this desired property with an estimated probability.
An implementation can fail to meet this desired property of determinism for the

following reasons:

1. The initial states of the computations are not precisely defined.

2. The hardware fails due to a random physical fault.
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3. The notion of time is unclear.
4. The system (software) contains design errors or Non-Deterministic Design

Constructs (NDDC) that lead to unpredictable behavior in the value domain or

in the temporal domain.

From the point of view of fault-tolerance, every loss of determinism of a replicated

channel is tantamount to a failure of that channel that eliminates the further fault-

masking capability of the fault-tolerant system.

In order to realize replica-deterministic behavior in an implementation of a fault-

tolerant distributed real-time computer system, we must ensure that:

l The initial state of all involved computations is defined consistently. It is

impossible to build a replica-deterministic distributed real-time system without

the establishment of some sort of a sparse global time base for the consistent

time-stamping of the events in order to be able to determine whether an event is

included in the initial state or not. Without a sparse global time base and sparse

events, simultaneity cannot be resolved consistently in a distributed system,

possibly resulting in an inconsistent temporal order of the replicated messages

that report about these simultaneous events. Inconsistent ordering results in the

loss of replica determinism.
l The assignment of events to a sparse global time-base can be established at the

system level by the generation of sparse events or at the application level by the
execution of agreement protocols which assign consistently dense events to

sparse intervals.
l The message transport system among the components is predictable, i.e.,

the instants of message delivery can be foreseen and the temporal order of the

received messages is the same as the temporal order of the sent messages across
all channels.

l The computer system and the observer (user) agree on a precise notion of

real-time.
l All involved computations are certain, i.e., there are no program constructs in

the implementation that produce arbitrary results or contain NDDCs, and that the

final result of a computation will be available during the anticipated acceptance

window.

If any one of the above conditions is not satisfied, then the fault-masking

capability of a fault-tolerant system may be reduced or lost.

5.6.2 Consistent Initial States

Correct replicated channels that are introduced to mask a failure will only produce

identical results if they start from the same initial state and receive the same inputs

at the same instants.
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According to Sect. 4.2.1, the state of a component can only be defined if there is

a consistent separation of past events from future events. The sparse time model,

introduced in Sect. 3.3, provides for such a consistent separation of past events from

future events and makes it possible to define the instants where the initial state of a

distributed system is consistently defined. Without a sparse global time, the estab-

lishment of a consistent initial state of replicated components of a distributed

system is difficult.

A sensor is a physical device that will eventually fail. In order to mask the failure

of a sensor, multiple sensors must be provided in a fault-tolerant system that measure,

either directly or indirectly, the same physical quantity. There are two reasons why

redundant observations of a physical quantity by replicated sensors will deviate:

1. It is impossible to build perfect sensors. Every real sensor has a finite measure-

ment error that limits the accuracy of the observed value.

2. The quantities in the physical world are normally analog values, but their repre-
sentations in cyber-space are discrete values, leading to a discretization error.

It is therefore necessary to execute agreement protocols at the boundary between

the physical world and cyber space in order that all replicated channels receive the

consistent (exactly the same) agreed input data (see Sect. 9.6). These agreement

protocols will present the same set of values at the same sparse time interval to all

replicated channels.

5.6.3 Non-deterministic Design Constructs

A distributed computation that starts from a well-defined initial state can fail to

reach the envisioned goal state for the following reasons:

1. A hardware fault or design error causes the computation to crash, to deliver an

incorrect result, or to delay the computation beyond the end of the agreed

temporal acceptance window. It is the goal of a fault-tolerant design to mask

these kinds of failures.

2. The communication system or the clocking system fails.

3. A non-deterministic design constructs (NDDC) destroys the determinism. A loss

of determinism, caused by an NDDC, eliminates the fault-masking capability of

a fault-tolerant system.

The undesired effect of an NDDC can be in the value domain or in the temporal
domain. A basic assumption in the design of a fault-tolerant system that masks

failures by comparing the results of replica-determinate channels is the statistical

independence of failures in different channels. This assumption is violated if an

NDDC is the cause of the loss of determinism, because the same NDDCmay appear

in all replicated channels. This leads to dangerous correlated failures of the repli-

cated channels.
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The following list is indicative of constructs that can lead to a loss of determinism

in the value domain (i.e., L-determinism):

1. Random number generator. If the result of a computation depends on a random

number that is different for each channel, then the determinism is lost. Commu-

nication protocols that resolve a media-access conflict by reference to a random

number generator, such as the bus-based CSMA/CD Ethernet protocol, exhibit

non-determinism.
2. Non-deterministic Language Features. The use of a programming language

with non-deterministic language constructs, such as the SELECT statement in

an ADA program, can lead to the loss of replica determinism. Since the

programming language does not define which alternative is to be taken at a

decision point, it is left up to the implementation to decide the course of action to

be taken. Two replicas may take different decisions.

3. Major decision point. A major decision point is a decision point in an algorithm
that provides a choice between a set of significantly different courses of action.

If the replicated components select different computational trajectories at a

major decision point, then the states of the replicas will start to diverge.

Example: Consider the case where the result of a timeout check determines whether a

process continues or backtracks. This is an example for a major decision point.

4. Preemptive scheduling. If dynamic preemptive scheduling is used then the

points in the computations where an external event (interrupt) is recognized

may differ at the different replicas. Consequently, the interrupting processes see

different states at the two replicas at the point of interruption. They may reach

different results at the next major decision point.

5. Inconsistent message order. If the message order in the replicated communica-

tion channels is not identical, then the replicated channels may produce different

results.

Most of the above constructs can also cause a loss of determinism in the

temporal domain. Additionally, the following mechanisms and inadequacies must

be considered that can cause a loss of the temporal dimension of determinism, even
if the system is L-deterministic:

1. Task preemption and blocking. Task preemption and blocking extend the exe-

cution time of tasks and may delay a result until the acceptance window has been

closed.

2. Retry mechanisms. Any retry mechanism in hardware or software leads to an

extension of the execution time and can cause an unacceptable delay of a value-

correct result.

3. Race conditions. A semaphore wait operation can give rise to non-determinism,

because of the uncertain outcome regarding the process that will win the race for

the semaphore. The same argument applies to communication protocols that

resolve the access conflict by relying on the outcome of non-determinate tem-

poral decisions, such as CAN or, to a lesser degree, ARINC 629.
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In some designs where NDDCs are present, an attempt is made to reestablish

replica determinism by explicitly coordinating the decisions that could lead to a loss

of determinism among the replicas, e.g., by distinguishing between a leader process
and a follower process [Pow91]. If at all possible, inter-replica coordination should
be avoided because it compromises the independence of the replicas, and requires

additional time and additional communication bandwidth.

5.6.4 Recovery of Determinism

A loss of determinism in an L-deterministic system can be avoided if the accep-
tance window is extended such that the probability of a deadline miss (i.e., that the
result is available at the end of the acceptance window) is reduced to an acceptably

low value. This technique is often used to reestablish determinism at the macro-

level, even if the precise temporal behavior at the micro-level cannot be predicted.

The main disadvantage of this technique is the increased delay until a result is

delivered, which causes an increase in the dead-time of control loops and the

reaction time of reactive systems.

Example: Many natural laws at the level of Newtonian physics are considered to be

deterministic, although the underlying quantum-mechanical processes at the micro-level

are non-deterministic. The abstraction of deterministic behavior at the macro-level is

possible because the large number of involved particles and the large time-spans at the

macro-level, relative to the duration of the processes at the micro-level, makes it highly

improbable that non-deterministic behavior can be observed at the macro-level.

Example: In a server farm of a cloud, where more than 100,000 L-deterministic Virtual

Machines (VM) can be active at any instant, a failed VM can be reconfigured and restarted

such that the intended result is still made available within the specified acceptance window.
Such a system will have a deterministic behavior at the external level (see the Four

Universe Model in Sect. 2.3.1), although the implementation at the lower informational
level behaves non-deterministically.

The recovery of determinism at the external level (see the Four Universe Model
in Sect. 2.3.1) of systems that behave non-deterministically at the level of the

implementation is an important strategy when developing an understandable

model of the behavior of a system-of-systems at the user level.

Points to Remember

l An observation of an RT entity is an atomic triple < Name, tobs,
Value > consisting of the name of the RT entity, the point in real time when

the observation was made (tobs), and the observed value of the RT entity.

A continuous RT entity has always a defined value set and can be observed at

any instant, whereas a discrete RT entity can only be observed between the

L_event and the R_event.
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l An observation is a state observation if the value of the observation contains the
absolute state of the RT entity. The time of the state observation refers to the

point in real time when the RT entity was sampled.
l An observation is an event observation if it contains information about the

change of value between the old state and the new state. The time of the event

observation denotes the best estimate of the instant of this event.
l A real-time (RT) image is a current picture of an RT entity. An RT image is valid

at a given instant if it is an accurate representation of the corresponding RT

entity, both in the value domain and time domain.
l A real-time (RT) object is a container within a node of the distributed computer

system holding an RT image or an RT entity. A real-time clock with a specified

granularity is associated with every RT object.
l The present value of a temporally accurate RT image is a member of the set of

values that the RT entity had in its recent history.
l The delay between the observation of the RT entity and the use of the RT image

can cause, in the worst-case, a maximum error error(t) of the RT image that can

be approximated by the product of the maximum gradient of the value v of the
RT entity multiplied by the length of the accuracy interval.

l Every phase-sensitive RT image imposes an additional constraint on the sched-

uling of the real-time task that uses this RT image.
l State estimation involves the building of a model of an RT entity inside an RT

object to compute the probable state of an RT entity at a selected future instant,

and to update the corresponding RT image accordingly.
l If the behavior of an RT entity can be described by a continuous and differentia-

ble variable v(t), the first derivative dv/dt is sometimes sufficient to get a

reasonable estimate of the state of the RT entity at the point tuse in the neighbor-
hood of the point of observation.

l To decrease the coupling between sender and receiver the state estimation can be

performed in two steps: the sender performs a state estimation for the interval

[tobs, tarr], and the receiver performs a state estimation for the interval [tarr, tuse].
l A particular message becomes permanent at a given node at that instant when

the node knows that all the related messages that were sent to it, prior to the send

time of this message, have arrived (or will never arrive).
l The time interval between the start of transmission of a message and the instant

when this message becomes permanent at the receiver is called the action delay.
To avoid incorrect behavior, the receiver must delay any action on the message

until after the action delay has passed.
l An RT image may only be used if the message that transported the image has

become permanent, and the image is temporally accurate. In a system without

state estimation, both conditions can be satisfied only in the time window

[tpermanent, tobs + dacc].
l No matter whether the receiver receives one or more out of set of replicated

idempotent messages, the result will always be the same.

Points to Remember 131

Obermaisser
Hervorheben

Obermaisser
Hervorheben

Obermaisser
Hervorheben

Obermaisser
Hervorheben

Obermaisser
Hervorheben

Obermaisser
Hervorheben

Obermaisser
Hervorheben

Obermaisser
Hervorheben

Obermaisser
Hervorheben



l Determinism is a desired property of a computation that enables the prediction of
the output at a future instant on the basis of a given initial state and timed inputs.

l The basic causes for replica non-determinism are: inconsistent inputs, a differ-

ence between the computational progress and the progress of the physical time in

the replicas (caused by differing oscillator drifts), and NDDCs.
l If at all possible, inter-replica coordination should be avoided because it com-

promises the independence of the replicas, and requires additional time and

additional communication bandwidth.
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Review Questions and Problems

5.1 Give examples of RT entities that are needed to control an automotive engine.

Specify the static and dynamic attributes of these RT entities, and discuss the

temporal accuracy of the RT images associated with these RT entities.

5.2 What is the difference between a state observation and an event observation?
Discuss their advantages and disadvantages.

5.3 What are the problems with event observations?

5.4 Give an informal and a precise definition of the concept of temporal accuracy.
What is the recent history?

5.5 What is the difference between a parametric RT image and a phase-sensitive
RT image? How can we create parametric RT images?

5.6 What are the inputs to a state estimation model? Discuss state estimation in a

system with and without a global time-base.

5.7 Discuss the interrelationship between state estimation and composability.

5.8 What is a hidden channel? Define the notion of permanence.
5.9 Calculate the action delay in a distributed system with the following para-

meters: dmax ¼ 20 ms, dmin ¼ 1 ms:

(a) No global time available, and the granularity of the local time is 10 ms
(b) Granularity of the global time 20 ms

5.10 What is the relationship between action delay and temporal accuracy?
5.11 Define the notion of determinism! What is L-determinism?
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5.12 Give an example that shows that a local time-out can lead to replica

non-determinism.

5.13 What mechanisms may lead to replica non-determinism?

5.14 How can we build a replica-determinate system?

5.15 Why should explicit inter-replica coordination be avoided?

5.16 Calculate the action delay in the system of Fig. 5.9, considering that the nodes

are connected by anAFDX protocol with the temporal parameters of Table 7.2.
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Chapter 6

Dependability

Overview It is said that Nobel Laureate Hannes Alfven once remarked that in
Technology Paradise no acts of God can be permitted and everything happens
according to the blueprints. The real world is no technology paradise – components
can fail and blueprints (software) can contain design errors. This is the subject

of this chapter. The chapter introduces the notions of fault, error, and failure and

discusses the important concept of a fault-containment unit. It then proceeds

to investigate the topic of security and argues that a security breach can compromise

the safety of a safety-critical embedded system. The direct connection of many

embedded systems to the Internet – the Internet of Things (IoT) – makes it possible

for a distant attacker to search for vulnerabilities, and, if the intrusion is successful,
to exercise remote control over the physical environment. Security is thus becoming

a prime concern in the design of embedded systems that are connected to the

Internet. The following section deals with the topic of anomaly detection. An

anomaly is an out-of-norm behavior that indicates that some exceptional scenario

is evolving. Anomaly detection can help to detect the early effects of a random

failure or the activities of an intruder that tries to exploit system vulnerabilities.

Whereas an anomaly lies in the grey zone between correct behavior and failure, an

error is an incorrect state that requires immediate action to mitigate the conse-

quences of the error. Error detection is based on knowledge about the intended

state or behavior of a system. This knowledge can stem either from a priori

established regularity constraints and known properties of the correct behavior of

a computation, or from the comparison of the results that have been computed by

two redundant channels. Different techniques for the detection of temporal failures

and value errors are discussed. The following two sections deal with the design of

fault-tolerant systems that are capable of masking faults that are contained in

the given fault hypothesis. The most important fault-tolerance strategy is triple
modular redundancy (TMR), which requires a deterministic behavior of replicated

components and a deterministic communication infrastructure. Robustness, which

is discussed next, is a system property that tries to provide an acceptable level

of service despite unforeseen perturbations.

H. Kopetz, Real-Time Systems: Design Principles for Distributed Embedded Applications,
Real-Time Systems Series, DOI 10.1007/978-1-4419-8237-7_6,
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6.1 Basic Concepts

The seminal paper by Avizienis et al. [Avi04] establishes the fundamental concepts

in the field of dependable computing. The core concepts of this paper are: fault,
error, and failure (Fig. 6.1).

Computer systems are provided to offer a dependable service to system users.

A user can be a human user or another computer system. Whenever the behavior of
a system (see Sect. 4.1.1), as seen by the user of the system, deviates from the

intended service, the system is said to have failed. A failure can be pinned down
to an unintended state within the system, which is called an error. An error is

caused by an adverse phenomenon, which is called a fault.
We use the term intended to state the correct state or behavior of a system.

Ideally, this correct state or behavior is documented in a precise and complete

specification. However, sometimes the specification itself is wrong or incomplete.

In order to include specification errors in our model, we introduce the word

intended to establish an abstract reference for correctness.

If we relate the terms fault, error, and failure to the levels of the four universe

model (Sect. 2.3.1), then the term fault refers to an adverse phenomenon at any

level of the model, while the terms error and failure are reserved for adverse

phenomena at the digital logic level, the informational level, or the external level.

If we assume that a sparse global time base is available, then any adverse pheno-

menon at the digital logic level and above can be identified by a specific bit

pattern in the value domain and by an instant of occurrence on the sparse global

time base. This cannot be done for phenomena occurring at the physical level.

6.1.1 Faults

We assume that a system is built out of components. A component is a fault-
containment unit (FCU), if the direct effect of a single fault influences only

the operation of a single component. Multiple FCUs should fail independently.

Figure 6.2 depicts a classification of faults.

Fault-Space. It is important to distinguish faults that are related to a deficiency

internal to the FCU or to some adverse phenomena occurring external to the FCU.

subsystem under
consideration

unintended state deviation of actual
service from
intended service

cause of error
(and failure)

ERRORFAULT FAILURE

Fig. 6.1 Faults, errors, and

failures
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An internal fault of a component, i.e., a fault within the FCU can be a physical
fault, such as the random break of a wire, or a design fault either in the software

(a program error) or in the hardware (an erratum). An external fault can be a

physical disturbance, e.g., a lightning stroke causing spikes in the power supply or

the impact of a cosmic particle. The provision of incorrect input data is another

class of an external fault. Fault containment refers to design and engineering

efforts that ensure that the immediate consequences of a fault are limited to a

single FCU. Many reliability models make the tacit assumption that FCUs fail

independently, i.e., there is no single fault that can affect more than one FCU. This

FCU independence assumption must be justified by the design of the system.

Example: The physical separation of the FCUs of a fault-tolerant system reduces the

probability for spatial proximity faults, such that fault at a single location (e.g., impact in

case of an accident) cannot destroy more than a single FCU.

Fault Time. In the temporal domain a fault can be transient or permanent. Whereas

physical faults can be transient or permanent, design faults (e.g., software errors)

are always permanent.
A transient fault appears for a short interval at the end of which it disappears

without requiring any explicit repair action. A transient fault can lead to an error,
i.e., the corruption of the state of anFCU, but leaves the physical hardware undamaged

(by definition). We call a transient external physical fault a transitory fault.
An example for a transitory fault is the impact of a cosmic particle that corrupts

the state of an FCU. We call a transient internal physical fault an intermittent fault.
Examples for intermittent faults are oxide defects, corrosion or other faultmechanisms

that have not yet developed to a stage where the hardware fails permanently (refer

to Table 8.1). According to Constantinescu [Con02], a substantial number of the

transient faults observed in the field are intermittent faults. Whereas the failure rate

of transitory faults is constant, the failure rate for intermittent faults increases as a

function of time. An increasing intermittent failure rate of an electronic hardware

component is an indication for the wear-out of the component. It suggests that

preventive maintenance – the replacement of the faulty component – should be

performed in order to avoid a permanent fault of the component.

fault

time

physical
(hardware)

design
(software)

physical
(environment)

input data

external

internal

space

permanent

transient

Fig. 6.2 Classification of

faults
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A permanent fault is a fault that remains in the system until an explicit repair

action has taken place that removes the fault. An example for a permanent external
fault is a lasting breakdown of the power supply. A permanent internal fault can be
in the physical embodiment of the hardware (e.g., a break of an internal wire)

or in the design of the software or hardware. The mean time it takes to repair a

system after the occurrence of a permanent fault is called MTTR (mean time
to repair).

6.1.2 Errors

The immediate consequence of a fault is an incorrect state in a component. We call

such an incorrect state, i.e., a wrong data element in the memory, a register, or

in a flip-flop circuit of a CPU, an error. As time progresses, an error is activated
by a computation, detected by some error detection mechanism, or wiped out.

An error is activated if a computation accesses the error. From this instant

onwards, the computation itself becomes incorrect. If a fault impacts the contents

of a memory cell or a register, the consequent error will be activated when this

memory cell is accessed by a computation. There can be a long time-interval

between error occurrence and error activation (the dormancy of an error) if a

memory cell is involved. If a fault impacts the circuitry of the CPU, an immediate

activation of the fault may occur and the current computation will be corrupted.

As soon as an incorrect computation writes data into the memory, this part of

memory becomes erroneous as well.
We distinguish between two types of software errors, called Bohrbugs and

Heisenbugs [Gra85]. A Bohrbug is a software error that can be reproduced

L-deterministically in the data domain by providing a specific input pattern to

the routine that contains the Bohrbug, i.e., a specific pattern of input data that

always leads to the activation of the underlying Bohrbug. A Heisenbug is a

software error that can only be observed if the input data and the exact timing of

the input data – in relation to the timing of all other activities in the computer – are

reproduced precisely. Since the reproduction of a Heisenbug is difficult, many

software errors that pass the development and testing phase and show up in

operational systems are Heisenbugs. Since the temporal control structure in

event-triggered systems is dynamic, Heisenbugs are more probable in event-

triggered systems than in time-triggered systems, which have a data-independent

static control structure.

Example: A typical example for a Heisenbug is an error in the synchronization of the data
accesses in a concurrent system. Such an error can only be observed, if the temporal

relationships between the tasks that access the mutually exclusive data are reproduced

precisely.

An error is detected, when a computation accesses the error and finds out that

the results of the computation deviates from the expectations or the intentions of
the user, either in the domain of value or the domain of time. For example, a simple
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parity check detects an error if it can be assumed that the fault has corrupted only a

single bit of a data word. The time interval between the instant of error ( fault)
occurrence and the instant of error detection is called the error-detection latency.
The probability that an error is detected is called error-detection coverage. Testing is
a technique to detect design faults (software errors and hardware errata) in a system.

An error is wiped-out, if a computation overwrites the error with a new value

before the error has been activated or detected. An error that has neither been

activated, detected, or wiped-out is called a latent error. A latent error in the state of
a component results in a silent data corruption (SDC), which can lead to serious

consequences.

Example: Let us assume that a bitflip occurs in a memory cell that is not protected by a

parity bit and that this memory cell contains sensory input data about the intended acceler-

ation of an automotive engine. The consequent silent data corruption can result in an

unintended acceleration of the car.

6.1.3 Failures

A failure is an event that denotes a deviation between the actual behavior and

the intended behavior (the service) of a component, occurring at a particular

instant. Since, in our model, the behavior of a component denotes the sequence of

messages produced by the component, a failure manifests itself by the production

of an unintended (or no intended) message. Figure 6.3 classifies the failure of

a component:

Domain. A failure can occur in the value domain or in the temporal domain.
A value failure means that an incorrect value is presented at the component-user

interface. (Remember, the user can be another system). A temporal failure means

that a value is presented outside the intended interval of real-time. Temporal

failures only exist if the system specification contains information about

the intended temporal behavior of the system. Temporal failures can be subdivided

into early temporal failures and late temporal failures. A component that contains

internal error detection mechanisms in order to detect any error and suppresses

a result that contains a value error or an early temporal failure will only exhibit a

late temporal failure, i.e., an omission, at the interface to its users. We call such

a failure an omission failure. A component that only makes omission failures is

called a fail-silent component. If a component stops working after the first

failure

view

inconsistent
consistent

frequency

repeated
once (transient)

permanent

severity

<severity class>
benign

malign

domain

temporal
value

Fig. 6.3 Classification of failures
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omission failure, it is called a fail-stop component. The corresponding failure is

sometimes called a clean failure or a crash failure.

Example: A self-checking component is a component that contains internal failure

detection mechanisms such that it will only exhibit omission failures (or clean failures)
at the component-user interface. A self-checking component can be built out of two

deterministic FCUs that produce two results at about the same time and where the

two results are checked by a self-checking checker.

Example: Fault-injection experiments of the MARS architecture have shown that between

1.9% and 11.6% of the observed failures were temporal failures, meaning that a message

was produced at an unintended instant. An independent time-slice controller, a guardian,

has detected all of these temporal failures [Kar95, p. 326].

Severity. Depending on the effect a failure has on its environment, we distinguish

between two extreme cases, benign and malign failures (see also Sect. 1.5). The

cost of a benign failure is of the same order of magnitude as the loss of the normal

utility of the system, whereas a malign failure can result in failure costs that are orders

of magnitude higher than the normal utility of a system, e.g., a malign failure can

cause a catastrophe such as an accident. We call applications where malign failures

can occur, safety-critical applications. The characteristics of the application determine

whether a failure is benign or malign. In between these two extreme cases of

benign and malign, we can assign a severity class to a failure, e.g., based on the

monetary impact of a failure or the impact of the failures on the user experience.

Example: In a multimedia system, e.g., a digital television set, the failure of a single pixel

that is overwritten in the next cycle is masked by the human perception system. Such a

failure is thus of negligible severity.

Frequency. Within a given time interval, a failure can occur only once or repeat-
edly. If it occurs only once, it is called a single failure. If a system continues to

operate after the failure, we call the failure a transient failure. A frequently

occurring transient failure is called a repeated failure. A special case of a single

failure is a permanent one, i.e., a failure after which the system ceases to provide a

service until an explicit repair action eliminates the cause of the failure.

View. If more than one user looks at a failing component, two cases can

be distinguished: all users see the same failing behavior – we call this a consistent
failure – or different users see different behaviors –we call this an inconsistent failure.
In the literature, different names are used for an inconsistent failure: two-faced
failure, Byzantine failure, ormalicious failure. Inconsistent failures are most difficult

to handle, since they have the potential to confuse the correct components (see

Sect. 3.4.1). In high-integrity systems, the occurrence of Byzantine failures must

be considered [Dri03].

Example: Let us assume that a system contains three components. If one of them fails in an

inconsistent failure mode, the other two correct components will have different views of the

behavior of the failing component. In an extreme case, one correct component classifies the

failing component as correct, while the other correct component classifies the failing compo-

nent as erroneous, leading to an inconsistent view of the failed component among the correct

components.

140 6 Dependability



Example: A slightly-out-of-specification (SOS) failure is a special case of a Byzantine.

SOS failures can occur at the interface between the analog level and the logical level of the

four-universe model (see Sect. 2.3.1). If, in a bus system, the voltage of the high-level

output of a sender is slightly below the level specified for the high-level state, then some

receivers might still accept the signal, assuming the value of the signal is high, while others
might not accept the signal, assuming the value is not high. SOS failures are of serious

concern if signals are marginal w.r.t. voltage or timing.

Propagation. If an error inside a component is activated and propagates outside the

confines of the component that has been affected by the fault then we speak of error
propagation. Let us make the simplifying assumption that a component commu-

nicates with its environment solely by the exchange of messages and there is no

other means of interaction of components (such as a common memory). In such a

system, an error can propagate outside the affected component solely by the

transmission of an incorrect message.
In order to avoid that a propagated error infects other – up to that time healthy –

components and thus invalidates the component independence assumption, error
propagation boundaries must be erected around each component. A message can

be incorrect either in the value domain (the data field of the message contains a

corrupted value) or in the time domain, i.e., the message is sent at an unintended

instant or not at all (omission failure). Temporal message failures can be detected

by the communication system, provided the communication system has a priori

knowledge about the correct temporal behavior of a component. Since a communi-

cation system is agnostic about the contents of the value field of a message

(see Sect. 4.6.2), it is the responsibility of the receiver of the message to detect

corrupted values, i.e., errors, in the data field of a message.

In a cyclic system, the corruption of the g-state (see Sect. 4.2.3) is of particular
concern, since the g-state contains the information of the current cycle that

influences the behavior of the next cycle. Since a latent error in the g-state can

become an incorrect input to a computation in the next cycle, a gradual increase in

the number of errors in the g-state can occur (called state erosion). If the g-state is
empty, then there is no possibility of error propagation of an error from the current

cycle to the next cycle. In order to avoid error propagation from one cycle to the

next cycle, the integrity of the g-state should be monitored by a special error

detection task of an independent diagnostic component.

6.2 Information Security

Information security deals with the authenticity, integrity, confidentiality, privacy,
and availability of information and services that are provided by a computer

system. In the following section, we always mean information security when we

use the term security. We call a deficiency in the design or operation of a computer

system that can lead to a security incident a vulnerability and the successful

exploitation of a vulnerability an intrusion. The following reasons make clear
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why information security has become a prime concern in the design and operation

of embedded systems [Car08]:

1. Controllers are computers. Over the past few years, hard-wired electronic con-

trollers have been replaced by programmable computers with non-perfect

operating systems, making it possible for an outsider to exploit the vulnerabilities

of the software system.

2. Embedded systems are distributed. Most embedded systems are distributed, with

wire-bound or wire-less channels connecting the nodes. An outside intruder

can use these communication channels to gain access to the system.

3. Embedded systems are connected to the Internet. The connection of an

embedded system to the Internet makes it possible for an intruder anywhere in

the world to attack a remote system and to systematically exploit any detected

vulnerability.

As of today, there is normally a human mediator between the cyberspace (e.g., the
Internet) and actions in the physical world. Humans are supposed to have common
sense and responsibility. They are able to recognize an evidently wrong computer

output and will not set any actions in the physical world based on such a wrong

output. The situation is different in embedded systems connected directly to the

Internet – the Internet-of-Things (IoT), where the smart object at the edge of the

Internet (e.g., a robot) can immediately interact with the physical world. An

adversary can compromise the integrity of the embedded system by breaching the

security walls, thus becoming a safety hazard. Alternatively, an adversary can carry

out a denial-of-service attack and thus bring down the availability of an important

service. Security and safety are thus interrelated and of utmost concern in embed-
ded systems that are connected to the Internet.

Example: Let us assume that an owner of a vacation home can set the temperature of the

thermostat of his electric furnace in the vacation home remotely via the Internet. If an

adversary gets control of the thermostat he can elevate the temperature to a high level and

increase the energy consumption significantly. If the adversary executes this attack on all

vacation homes in a neighborhood, then the total power consumption in the neighborhood

might increase beyond the critical level that leads to a blackout (example taken from

Koopman [Koo04]).

Standard security techniques are based on a sound security architecture that con-

trols the information flow among subsystems of different criticality and confidenti-
ality. The architectural decisions are implemented by the deployment of

cryptographic methods, such as encryption, random number generation, and

hashing. The execution of cryptographic methods requires extra energy and silicon

real estate, which are not always available in a small (portable) embedded systems.

6.2.1 Secure Information Flow

The main security concerns in embedded systems are the authenticity and integrity of
the real-time data and of the system configuration, and, to a lesser extent, the control of
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access to data. The security policy must specify which processes are authorized to

modify data (data integrity) and which processes are allowed to see the data (confi-
dentiality of data). A security policy for data integrity can be established on the basis
of the Bibamodel, while a security policy for the confidentiality of data can be derived

from the Bell-LaPaluda model [Lan81]. Both models classify the processes and the

data files according to an ordered sequence of levels, fromhighest to lowest.Aprocess

may read and modify data that is at the same level as the process. The respective

security models govern the access and modification of data at a level that is different

from the level of the reading or writing process.

The concern of the Biba model is the integrity of the data, a concern that is

highly relevant in multi-criticality embedded systems. The classification of the

data files and the processes is determined by the criticality from the point of view of

the safety analysis (see Sect. 11.4.2). In order to ensure the integrity of a (high-critical)

process, the (high-critical) process must not read data that is classified at a lower level

than the classification of the (high-critical) process. In order to ensure that a (low-

criticality) process will not corrupt data of a higher criticality level, the Biba model

states that no (low-criticality) process may modify data that is at a higher criticality

level than that of the (low-criticality) process.

The concern of the Bell-LaPaluda model is the confidentiality of the data.
The classification of the data files and the processes is determined by the confi-
dentiality of the data from top secret to unclassified. In order to ensure the

confidentiality of top-secret data, it must be made certain that no (unclassified)

process may read data that is classified at a higher level than the classification of

the (unclassified) process. In order to ensure that a (top secret) process will not

publish confidential data to a (unclassified) lower level, the Bell-LaPaluda
states no (top secret) process may write data to a data file that is at a lower

confidentiality level than that of the (top secret) process.

The classification of processes and data from the point of view of integrity will

normally be different from classification according to the point of view of confi-

dentiality. These differences can lead to a conflict of interest. In case of such a

conflict, the integrity concern is the more important concern in embedded systems.

The selected security policy must be enforced by mechanisms that establish

the authenticity of processes and the integrity of the data that is exchanged. These

mechanisms make wide use of the well-understood cryptographic methods

discussed in Sect. 6.2.3.

6.2.2 Security Threats

A systematic security analysis starts with the specification of an attack model.
The attack model puts forward an attack hypothesis, i.e., it lists the threats and

makes assumptions about the attack strategy of an adversary. It then outlines the

conjectured steps taken by an adversary to break into a system. In the next phase

a defense strategy is developed in order to counter the attack. There is always
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the possibility that the attack hypothesis is incomplete and a clever adversary

finds a way to attack the system by a method that is not covered by the attack

hypothesis.

The typical attacker proceeds according to the following three phases: access
to the selected subsystem, search for and discovery of a vulnerability, and finally,

intrusion and control of the selected subsystem. The control can be passive or

active. In passive control, the attacker observes the system and collects confidential

information. In active control, the attacker modifies the behavior of the system

such that the system will contribute to the attacker’s mean purpose. A security

architecture must contain observation mechanisms, i.e., intrusion detectionmechan-

isms, to detect malicious activities that relate to any of these three phases of an

attack. It also must provide firewalls and procedures that mitigate the consequences

of an attack such that the system can survive.

Access to the system must be prevented by requiring strict adherence to a

mandatory access control procedure, where every person or process must authenti-

cate itself and this authentication is verified by callback procedures. Security
firewalls play an important role to limit the access to sensitive subsystems to

authorized users.

The attacker’s search for vulnerabilities can be detected by intrusion detection
mechanisms,which can be part of an anomaly detection subsystem (see Sect. 6.3.1).

Anomaly detection is needed in order to detect the consequences of random

physical faults as well as the activities of a malicious intruder.

The capture of control over a subsystem can be prevented by a structured

security architecture, where different criticality levels are assigned to different

processes and a formal security policy, based on a formal model, controls the

interactions among these criticality levels.

The attainment of topmost security is not only a technical challenge. It requires

high-level management commitment in order to ensure that the users strictly

follow the organizational rules of the given security policy. Many security

violations are not caused by technical weaknesses in a computer system, but by a

failure of the users to comply with the existing security policies of the organization.

Example: Beautement et al. [Bea09] state: It is widely acknowledged in security research
and practice that many security incidents are caused by human, rather than technical
failures. Researchers approaching the issue from a Human–Computer Interaction (HCI)
perspective demonstrated that many human failures are caused by security mechanisms
that are too difficult for a non-expert to use.

The following list of security attacks is only an indication of what has been

observed. It is by no means complete:

Malicious Code Attack. A malicious code attack is an attack where an adversary

inserts malicious code, e.g., a virus, a worm, or a Trojan horse, into the software in

order that the attacker gets partial or full control over the system. This malicious code

can be inserted statically, e.g., by a malicious maintenance action (insider attack),
by the process of downloading a new software version, or dynamically during the

operation of a system by accessing an infected Internet site or opening an infected

data structure.
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Spoofing Attack. In a spoofing attack an adversary masquerades as a legitimate user

in order to gain unauthorized access to a system. There are many versions

of spoofing attacks in the Internet: replacement of a legitimate web-page (e.g., of

a bank) by a seemingly identical copy that is under the control of the adversary

(also called phishing), the replacement of the correct address in an email by a fake

address, a man-in-the middle attack where an intruder intercepts a session between

two communicating partners and gains access to all exchanged messages.

Password Attack. In a password attack, an intruder tries to guess the password that

protects the access to a system. There are two versions of password attacks, dictio-
nary attacks and brute force attacks. In a dictionary attack, the intruder guesses

commonly used password strings. In a brute force attack, the intruder searches

systematically through the full code space of the password until he is successful.

Cipher-Text Attack. In this attack model the attacker assumes to have access to the

cipher text and tries to deduce the plaintext and possibly the encryption key from

the cipher text. Modern standardized encryption technologies, such as the AES

(Advanced Encryption Standard), have been designed to make the success of

cipher-text attacks highly improbable.

Denial of Service Attack. A denial of service attack tries to make a computer

system unavailable to its users. In any wireless communication scenario, such as

a sensor network, an adversary can jam the ether with high-power signals of the

appropriate frequency in order to interfere with the communication of the targeted

devices. In the Internet, an adversary can send a coordinated burst of service

requests to a site to overload the site such that legitimate service requests cannot

be handled any more.

Botnet Attack. A botnet (the word bot is an abbreviation of robot) is a set of

infected networked nodes (e.g., thousands of PC or set top boxes) that are under

the control of an attacker and cooperate (unknowingly to the owner of the node)

to achieve a malicious mission. In a first phase an attacker gets control over the

botnet nodes and infects them with malicious code. In the second phase he launches

a distributed denial-of-service attack to a chosen target website to make the target

website unavailable to legitimate users. Botnet attacks are among the most serious

attack modes in the Internet.

Example: A study in Japan [Tel09, p. 213] showed that it takes about four minutes, on
average, for an unprotected PC to be infected when connected to the Internet and that an

estimated 500,000 PCs are infected. A total of around 10 Gbps of traffic from Japanese IP

addresses are wasted by botnets (SPAM mail traffic via botnets is not included).

6.2.3 Cryptographic Methods

The provision of an adequate level of integrity and confidentiality in embedded

systems that are connected to the Internet, the IoT, can only be achieved by the

judicious application of cryptographic methods. Compared to general computing
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systems, the security architecture of embedded systems must cope with the

following two additional constraints:

l Timing constraints. The encryption and decryption of data must not extend the

response time of time critical tasks; otherwise the encryption will have a

negative impact on the quality of control.
l Resource constraints. Many embedded systems are resource constrained, con-

cerning memory, computational power, and energy.

Basic cryptographic concepts. The basic cryptographic primitives that must be

supported in any security architecture are symmetric key encryption, public key
encryption, hash functions, and random number generation. The proper application
of these primitives, supported by a secure key management system, can ensure

the authenticity, integrity, and confidentiality of data.

In the following paragraphs we use the term hard to mean: it is beyond

the capabilities of the envisioned adversary to break the system within the time

period during which the security must be provided. The term strong cryptography is
used if the system design and the cryptographic algorithm and key selection

justify the assumption that a successful attack by an adversary is highly improbable.

In cryptography, an algorithm for encryption or decryption is called a cipher.
During encryption, a cipher transforms a plaintext into a ciphertext. The ciphertext
holds all the information of the plaintext but cannot be understood without

knowledge of the algorithm and the keys to decrypt it.

A symmetric key encryption algorithm encrypts and decrypts a plaintext with
the same (or trivially related) keys. Therefore both the encryption and decryption

key must be kept secret. In contrast, an asymmetric key algorithm uses different

keys, a public key and a private key, for encryption and decryption. Although the

two keys are mathematically related, it is hard to derive the private key from

the knowledge of the public key. Asymmetric key algorithms form the basis for

the widely used public key encryption technology [Riv78].
The procedure for key distribution is called key management. In public key

encryption systems, the security of the system depends on the secrecy of the private
keys and the establishment of a trusted relationship between the public key and

the identity of the owner of the respective private key. Such a trusted relationship

can be established by executing a secure network authentication protocol to an

a priori known security server. An example of such a network authentication

protocol is the KERBEROS protocol that provides mutual authentication [Neu94]

and establishes a secure channel between two nodes in an open (insecure) network

by using a trusted security server.
Random numbers are required in both symmetric and asymmetric cryptography

for key generation and for the generation of unpredictable numbers that are used

only once (called a nonce) in order to ensure the uniqueness of a key of a session.

In public key encryption, the node that needs a private key must generate the

asymmetric pair of keys out of a nonce. The private key is kept secret to the

node, while the public key is disseminated over open channels to the public.

A signed copy of the public key must be sent to a security server in order that
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other nodes can check the trusted relationship between the public key and the

identity of the node that generated the public key.

In order to ensure the secrecy, a private key should not be stored in plain text

but must be sealed in a cryptographic envelope. To operate on such an envelope a

non-encrypted key is required, which is usually called the root key. The root key

serves as the starting point for the chain of trust.
The computational effort required to support public key encryption is substan-

tially higher than the computation effort needed for symmetric key encryption.
For this reason, public key encryption is sometimes only used for the secure

distribution of keys, while the encryption of the data is done with symmetric keys.

A cryptographic hash function is an L-deterministic (see Sect. 5.6) mathematical

function that converts a large variable-sized input string into a fixed size bit-string,

called the cryptographic hash value (or for short a hash) under the following

constraints:

l An accidental or intentional change of data in the input string will change the

hash value.
l It should be hard to find an input string that has a given hash value.
l It should be hard to find two different input strings with the same hash value.

Cryptographic hash functions are required to establish the authenticity and integrity

of a plain text message by an electronic signature.

Authentication. Anyone who knows the sender’s public key can decrypt a message

that is encrypted with the sender’s private key. If a trusted relationship between the
sender’s public key and the identity of the sender has been ascertained, then the

receiver knows that the identified sender has produced the message.

Digital signature. If both, the authenticity and integrity of a plain-text message

must be established, the plain text is taken as the input to a cryptographic

hash function. The hash value is then encrypted with the author’s private key to

generate the digital signature that is added to the plain text. A receiver who is in

the possession of the author’s public key must check whether the decrypted

signature is the same bit string as the recalculated hash value of the received text.

Privacy. Anyonewho uses a receiver’s public key for the encryption of amessage can

be sure that only the receiver, whose public key has been used, can decipher the

message.

Resource Requirements. The computational effort for cryptographic operations

measured in terms of required energy, time and gate count of an implemen-
tation depends on the selected algorithm and its implementation. In 2001 the

US National Institute of Standards has selected the AES (Advanced Encryption

Standard) Algorithm as the Federal Information Processing Standard for symmetric

encryption. AES supports key sizes of 128, 192 and 256 bits. Table 6.1 gives an

estimate of the resource requirements of different hardware implementations for

the AES. From this table it is evident that there is an important design trade-off

between required time and required silicon area.
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The different implementations of the AES algorithm depicted in Table 6.1 show

the tradeoff between silicon area (gate count) and speed (clock cycles) that

applies to many algorithms. The resource requirements for public key encryption

are higher than listed in Table 6.1. However, there is a concerted research effort

ongoing to find resource-aware implementations for public-key cryptography that

use elliptic curve cryptography [Rom07] in order to deploy public key cryptogra-

phy in small embedded systems at a reasonable cost. The results of this research

on one side and the progress of the semiconductor industry on the other side will

provide the technical and economic basis for the pervasive use of cryptography

in all but very small embedded systems in the near future.

6.2.4 Network Authentication

In the following section, we outline a sample of a network authentication protocol

that uses public key cryptography to establish the trusted relationship between a

new node and its public key. For this purpose we need the trusted security server.
Let us assume all nodes know the public cryptographic key of the security server

and the security server knows the public cryptographic keys of all nodes a priori.

If a node, say node A, wants to send a encrypted message to a yet unknown

node, say node B, then node A takes the following steps:

1. Node A forms a signed message with the following content: current time, node
A wants to know what is the public key of node B?, signature of node A. It then
encrypts this message with the public key of the security server, and sends

the ciphertext message to the security server over an open channel.

2. The security server decrypts the message with its private key and checks

whether the message has been sent recently. It then examines the signature

of the message with the a priori known public key of the signature of node A

to find out whether the contents of the message from node A are authentic.

3. The security server forms a response message with the contents: current time,
address of node B, public key of node B, signature, encrypts this message with

the public key of node A, and sends this ciphertext message to node A over

an open channel.

4. Node A decrypts the message with its private key, checks whether the message

has been sent recently and whether the signature of the security server is

authentic. Since node A trusts the information of the security server, it now

Table 6.1 Comparison of requirements of different hardware AES implementations (Adapted

from Feldhofer et al. [Fel04a])

AES 128 encryption Gate equivalent Clock cycles

Feldhofer 3,628 992

Mangard 10,799 64

Verbauwhede 173,000 10
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knows that the public key of node B is authentic. It uses this key to encrypt the

messages it sends to B.

A network authentication protocol that establishes a secure channel between

two nodes by using symmetric cryptography is the aforementioned KERBEROS

protocol [Neu94].

6.2.5 Protection of Real-Time Control Data

Let us assume the following attack model for a real-time process control system in

an industrial plant. A number of sensor nodes distributed throughout the plant

periodically send real-time sensor values by open wireless channels to a controller

node which calculates the set points for the control valves. An adversary wants to
sabotage the operation of the plant by sending counterfeit sensor values to the

controller node.

In order to establish the authenticity and integrity of a sensor value, a standard

security solution would be to append an electronic signature to the sensor value

by the genuine sensor node and to check this signature by the controller node that

receives the message. However, this approach would extend the duration of

the control loop by the time it takes for generating and checking the electronic

signature. Such an extension of the length of the control loop period has a negative

effect on the quality of control and must be avoided.

In a real-time control system, the design challenge is to find a solution that

detects an adversary without any extension of the duration of the control-loop

period. The above example shows that the two requirements, real-time performance
and security cannot be dealt with separately in a real-time control system.

There are characteristics of real-time control systems that must be considered

when designing a security protocol:

l In many control systems, a single corrupted setpoint value is not of serious

concern. Only a sequence of corrupted values must be avoided.
l Sensor values have a short temporal accuracy (see Sect. 5.4.2) – often in the

range of a few milliseconds.
l The resources of many mobile embedded system, both computational and

energy, are constrained.

Some of these characteristics are helpful; others make it more difficult to find

a solution.

Example: It is possible to take the signature generation and the signature check of real-

time data out of the control loop and perform it in parallel. As a consequence, the detection

of an intrusion will be delayed by one or more control cycles (which is acceptable

considering the characteristics of control system).

Further research is needed to find effective protection techniques for real-time data

under the listed constraints.
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6.3 Anomaly Detection

6.3.1 What Is an Anomaly?

If we look at the state space of real-life embedded systems, we find many examples

that show a grey zone between the intended (correct) state and an error. We call

states in this intermediate grey zone between intended and erroneous states

or behavioral patterns an anomaly or an out-of-norm state (see Fig. 6.4). Anomaly

detection is concerned with the detection of states or behavioral patterns outside the

expected, i.e., the normal behavioral patterns, but do not fall into the category

of errors or failures. There are many reasons for the occurrence of anomalies:
activities by an intruder to find a vulnerability, exceptional circumstances in the

environment, user mistakes, degradation of sensors resulting in imprecise sensor

readings, external perturbations, specification changes, or imminent failures caused

by an error in the design or the hardware. The detection of anomalies is important,

since the occurrence of an anomaly is an indication that some atypical scenario

that may require immediate corrective action (e.g., the imminent intrusion by an

adversary) is developing.

Application-specific a priori knowledge about the restricted ranges and the

known interrelationships of the values of RT entities can be used to detect anomalies

that are undetectable by syntactic methods. Sometimes these application-specific

mechanisms are called plausibility checks.

Example: The constraints imposed on the speed of change of the RT entities by the inertia

of a technical process (e.g., change of temperature) form a basis for very effective

plausibility checks.

Plausibility checks can be expressed in the form of assertions to check for the

plausibility of an intermediate result or at the end of a program by applying an

acceptance test [Ran75]. Acceptance tests are effective to detect anomalies

that occur in the value domain.

Advanced dynamic anomaly detection techniques keep track of the operational
context of a system and autonomously learn about the normal behavior in

Fig. 6.4 Grey zone between

intended and erroneous states
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specific contexts in order to be able to detect anomalies more effectively. In a

real-time control system that exhibits periodic behavior, the analysis of the time

series of real-time data is a very effective technique for anomaly detection.

An excellent survey of anomaly detection techniques is contained in Chandola

et al. [Cha09].

The anomaly detection subsystem should be separated from the subsystem

that performs the operational functions for the following reasons:

l The anomaly detection subsystem should be implemented as an independent

fault-containment unit, such that a failure in the anomaly detection subsystem

will have no direct effect on the operational subsystem and vice versa.
l Anomaly detection is a well-defined task that must be performed independently

from the operational subsystem. Two different engineering groups should work on

the operational subsystem and the anomaly detection subsystem in order to avoid

common mode effects.

The multi-cast message primitive, introduced in Sect. 4.1.1, provides a means

to make the g-state of a component accessible to an independent anomaly-detection

subsystem without inducing a probe effect. The anomaly detection subsystem

classifies the observed anomalies on a severity scale and reports them either to

an off-line diagnostic system or to an on-line integrity monitor. The integrity

monitor can take immediate corrective action in case the observed anomaly points

to a safety-relevant incident.

Example: It is an anomaly if a car keeps accelerating while the brake pedal is being

pressed. In such a situation, an on-line integrity monitor should autonomously discontinue

the acceleration.

All detected anomalies should be documented in an anomaly database for further

on-line or off-line analysis. The depth of investigation into an anomaly depends on

the severity of the anomaly – the more severe the anomaly the more information

about the occurrence of the anomaly should be recorded. The off-line analysis of the

anomaly database can expose valuable information about weak spots of a system

that can be corrected in a future version.

In a safety-critical system, every single observed anomaly must be scrutinized in detail until

the final cause of the anomaly has been unambiguously identified.

6.3.2 Failure Detection

A failure can only be detected if the observed behavior of a component can be

judged in relation to the intended behavior. Failure detection within a system is

only possible if the system contains some form of redundant information about

the intended behavior. The coverage of the failure detector, i.e., the probability

that a failure will be detected if it is present, will increase if the information

about the intended behavior becomes more detailed. In the extreme case, where

every failure in the behavior of a component must be detected, a second component
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that provides the basis for the comparison – a golden reference component – is needed,
i.e., the redundancy is 100%.

Knowledge about the regularity in the activity pattern of a computation can

be used to detect temporal failures. If it is a priori known that a result message

must arrive every second, the non-arrival of such a message can be detected within

1 s. If it is known that the result message must arrive exactly at every full second,
and a global time is available at the receiver, then the failure-detection latency is

given by the precision of the clock synchronization. Systems that tolerate jitter

do have a longer failure-detection latency than systems without jitter. The extra

time gained from an earlier failure detection can be significant for initiating a

mitigation action in a safety-critical real-time system.

In real-time systems, the worst-case execution time (WCET see Sect. 10.2) of

all real-time tasks must be known in advance in order to find a viable schedule for

the task execution. This WCET can be used by the operating system to monitor

the execution time of a task. If a task has not terminated before its WCET expires,

a temporal failure of the task has been detected.

6.3.3 Error Detection

As mentioned before, an error is an incorrect data structure, e.g., an incorrect

state or an incorrect program. We can only detect an error if we have some

redundant information about the intended properties of the data structure under

investigation. This information can be part of the data structure itself, such as a

CRC field, or it can come from some other source, such as a priori knowledge
expressed in the form of assertions or a golden channel that provides a result that
acts as golden reference data structure.

Syntactic knowledge about the code space. The code space is subdivided into two

partitions, one partition encompassing syntactically correct values, with the other

containing detectably erroneous code-words. This a priori knowledge about the

syntactic structure of valid code words can be used for error detection. One plus

the maximum number of bit errors that can be detected in a codeword is called the

Hamming distance of the code. Examples of the use of error-detecting codes are:

error-detecting codes (e.g., parity bit) in memory, CRC polynomials in data trans-

mission, and check digits at the man-machine interface. Such codes are very

effective in detecting the corruption of a value.

Example: Consider the scenario where each symbol of an alphabet of 128 symbols is

encoded using a single byte. Because only seven bits (27 ¼ 128) are needed to encode a

symbol, the eighth bit can be used as a parity bit to be able to distinguish a valid codeword
from an invalid codeword of the 256 code words in the code space. This code has a

Hamming distance of two.

Duplicate channels. If two independent deterministic channels calculate two results

using the same input data, we can compare the results to detect a failure but cannot

decide which one of the two channels is wrong. Fault-injection experiments [Arl03]
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have shown that the duplicate execution of application tasks at different times is an

effective technique for the detection of transient hardware faults. This technique can

be applied to increase the failure-detection coverage, even if it cannot be guaranteed

that all task instances can be completed twice in the available time interval.

There are many different possible combinations of hardware, software, and time

redundancy that can be used to detect different types of failures by performing

the computations twice. Of course, both computations must be replica determinate;
otherwise, many more discrepancies are detected between the redundant channels

than those that are actually caused by faults. The problems in implementing

replica-determinate fault-tolerant software have already been discussed in Sect. 5.6.

Golden reference. If one of the channels acts as a golden reference that is consid-

ered correct by definition, we can determine if the result produced by the other

channel is correct or faulty. Alternatively, we need three channels with majority

voting to find out about the single faulty channel, under the assumption that all three

channels are synchronized.

Example: David Cummings reports about his experience with error detection in the

software for NASA’s Mars Pathfinder spacecraft [Cum10]:

Because of Pathfinder’s high reliability requirements and the probability of unpredict-

able hardware errors due to the increased radiation effects in space, we adopted a highly

“defensive” programming style. This included performing extensive error checks in the

software to detect the possible side effects of radiation-induced hardware glitches and

certain software bugs. One member of our team, Steve Stolper, had a simple arithmetic

computation in his software that was guaranteed to produce an even result (2, 4, 6 and so

on) if the computer was working correctly. Many programmers would not bother to check

the result of such a simple computation. Stolper, however, put in an explicit test to see if the

result was even. We referred to this test as his “two-plus-two-equals-five check.” We never

expected to see it fail. Lo and behold, during software testing we saw Stolper’s error

message indicating the check had failed. We saw it just once. We were never able to

reproduce the failure, despite repeated attempts over many thousands if not millions of

iterations. We scratched our heads. How could this happen, especially in the benign

environment of our software test lab, where radiation effects were virtually nonexistent?

We looked carefully at Stolper’s code, and it was sound.

What can we learn from this example? We should never build a safety-critical

system that relies on the results of a single channel only.

6.4 Fault Tolerance

The design of any fault-tolerant system starts with the precise specification of a

fault hypothesis. The fault hypothesis states what types of faults must be tolerated

by the fault-tolerant system and divides the fault-space into two domains, the

domain of normal faults (i.e., the faults that must be tolerated) and the domain of

rare faults, i.e., faults that are outside the fault hypotheses and are assumed to

be rare events. Figure 6.5 depicts the state space of a fault-tolerant system. In the

center we see the correct states. A normal failure will bring the system into a
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normal fault-state (i.e., a state that is covered by the fault hypothesis). A normal

fault will be corrected by an available fault-tolerance mechanism that brings

the system back into the domain of correct states. A rare fault will bring the system
into a state that is outside the specified fault hypothesis and therefore will not be

covered by the provided fault-tolerance mechanisms. Nevertheless, instead of

giving up, a never-give-up (NGU) strategy should try to bring the system back

into a correct state.

Example: Let us assume that the fault hypothesis states that during a specified time

interval a fault of any single component must be tolerated. The case that two components

fail simultaneously is thus outside the fault hypothesis, because it is considered to be a rare
fault. If the simultaneous failure of two components is detected, then the NGU strategy

kicks in. In the NGU strategy it is assumed that the simultaneous faults are transient and a

fast restart of the complete system will bring the system back into a correct state. In order to

be able to promptly activate the NGU strategy we must have a detection mechanism inside

the system that detects the violation of the fault hypothesis. A distributed fault-tolerant

membership service, such as the membership protocol contained in the Time-Triggered

Protocol (TTP) [Kop93] implements such a detection mechanisms.

6.4.1 Fault Hypotheses

Fault-Containment Unit (FCU). The fault hypothesis begins with a specification

of the units of failure, i.e., the fault containment units (FCUs). It is up to quality

engineering to ensure that FCUs fail independently. Even a small correlation of

the failure rates of FCUs has a tremendous impact on the overall reliability of a

system. If a fault can cause more than one FCU to fail, then the probability of such

a correlated failure must be carefully analyzed and documented in the fault

hypotheses.

Fig. 6.5 State space of a fault-tolerant system
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Example: In a distributed system, a component, including hardware and software, can be

considered to form an FCU. Given proper engineering precautions concerning the power

supply and the electrical isolation of process signals have been made, the assumption that

components of a distributed system that are physically at a distance will fail independently

is realistic. On an MPSoC, an IP-core that communicates with other IP-cores solely by the

exchange of messages can be considered to form an FCU. However, since the IP-cores of an

MPSoC are physically close together (potential for spatial proximity faults), having a

common power supply and a common timing source, it is not justified to assume that the

failures of IP-cores are fully independent. For example, in the aerospace domain, a failure

rate of 10�6 FIT is assumed for a total MPSoC failure, no matter what kind of MPSoC-

internal fault-containment mechanisms are available.

Failure Modes and Failure Rates. In the next step, the assumed failure modes of

the FCUs are described and an estimated failure rate for each failure mode is

documented. These estimated failure rates serve as an input for a reliability

model to find out whether the calculated reliability of a design is in agreement

with the required reliability. Later, after the system has been built, these estimated

failure rates are compared with the failure rates that are observed in the field.

This is to check whether the fault hypothesis is reasonable and the required

reliability goals can be met. The following Table 6.2 lists orders of magnitude of

typical hardware failure rates of large VLSI chips [Pau98] that are used in the

industrial and automotive domain.

In addition to the failure modes and failure rates, the fault hypothesis must

contain a section that discusses the error and failure detection mechanisms that

are designed to detect a failure. This topic is discussed in Sect. 6.3.

Recovery Time. The time needed to recover after a transient failure is an important

input for a reliability model. In a state aware design, the recovery time depends on

the duration of the ground cycle (see Sect. 6.6) and the time it takes to restart a

component.

6.4.2 Fault-Tolerant Unit

In order to tolerate the failure of a fault-containment unit (FCU), FCUs are grouped

into fault-tolerant units (FTU). The purpose of an FTU is to mask the failure of

a single FCU inside the FTU. If an FCU implements the fail-silent abstraction,

then an FTU consists of two FCUs. If no assumptions can be made about the failure

behavior of an FCU, i.e., an FCU can exhibit Byzantine failures, then four FCUs

linked by two independent communication channels are needed to form an FTU.

If we can assume that a fault-tolerant global time is existent at all FCUs and that

Table 6.2 Order of magnitude of hardware failure rates

Failure mode Failure rate (FIT)

Permanent hardware failures 10–100

Non-fail silent permanent hardware failures 1–10

Transient hardware failures (strong dependence on environment) 1,000–1,000,000
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the communication network contains temporal failures of an FCU, then it is

possible to mask the failure of a non-fail-silent FCU by triplication, called triple
modular redundancy (TMR). TMR is the most important fault-masking method.

Although a failure of an FCU is masked by the fault-tolerant mechanism and is

thus not visible at the user interface, a permanent failure of an FCU nevertheless

reduces or eliminates any further fault-masking capability. It is therefore essential that

masked failures are reported to a diagnostic system so that the faulty units can be

repaired. Furthermore, special testing techniques must be provided to periodically

check whether all FCUs and the fault-tolerance mechanisms are operational. The

name scrubbing refers to testing techniques that are periodically applied to

detect faulty units and avoid the accumulation of errors.

Example: If the data words in memory are protected by an error-correcting code, then the

data words must be accessed periodically in order to correct errors and thus avoid the

accumulation of errors.

Fail-Silent FCUs. A fail-silent FCU consists of a computational subsystem and an

error detector (Fig. 6.6) or of two FCUs and a self-checking checker to compare the

results. A fail-silent FCU produces either correct results (in the value and

time domain) or no results at all. In a time-triggered architecture, an FTU that

consists of two deterministic fail-silent FCUs produces zero, one, or two correct

result messages at about the same instant. If it produces no message, it has failed.

If it produces one or two messages, it is operational. The receiver must discard

redundant result messages. Since the two FCUs are deterministic, both results,

if available, are correct and it does not matter which one of the two results is

taken. If the result messages are idempotent, two replicated messages will have the

same effect as a single message.

Triple Modular Redundancy. If a fault-containment unit (FCU) can exhibit

value failures at its linking interface (LIF) with a probability that cannot be

tolerated in the given application domain, then these value failures can be detected

and masked in a triple modular redundant (TMR) configuration. In a TMR config-

uration, a fault-tolerant unit (FTU) must consist of three synchronized deterministic

Fig. 6.6 FTU consisting of two fail-silent FCUs
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FCUs, where each FCU is composed of a voter and the computational subsystem.
Any two successive FTUs must be connected by two independent real-time

communication systems to tolerate a failure in any of the two communication

systems (Fig. 6.7). All FCUs and the communication system must have access to

a fault-tolerant global time base. The communication system must perform error

containment in the temporal domain, i.e., it must have knowledge about the

permitted temporal behavior of an FCU. In case an FCU violates its temporal

specification, the communication system will discard all messages received from

this FCU in order to protect itself from an overload condition. In the fault-free case,

each receiving FCU will receive six physical messages, two (via the two

independent communication systems) from each sending FCU. Since all FCUs

are deterministic, the correct FCUs will produce identical messages. The voter

detects an erroneous message and masks the error in one step by comparing the

three independently computed results and then selecting the result that has

been computed by the majority, i.e., by two out of three FCUs.

A TMR configuration that is set up according to the above specified rules will

tolerate an arbitrary failure of any FCU and any communication system, provided

that a fault-tolerant global time base is available.

Two different kinds of voting strategies can be distinguished: exact voting and

inexact voting. In exact voting, a bit-by-bit comparison of the data fields in

the result messages of the three FCUs forming an FTU is performed. If two out

of the three available messages have exactly the same bit pattern, then one of the

two messages is selected as the output of the triad. The underlying assumption

is that correctly operating replica-determinate components produce exactly the

same results. Exact voting requires that the input messages and the g-state of

the three FCUs that form an FTU are bit-identical. If the inputs originate from

redundant sensors to the physical environment, an agreement protocol must be

executed to enforce bit-identical input messages.

Fig. 6.7 Two FTUs, each one consisting of three FCUs with voters
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In inexact voting, two messages are assumed to contain semantically the same
result if the results are within some application-specific interval. Inexact voting

must be used if the replica determinism of the replicated components cannot

be guaranteed. The selection of an appropriate interval for an inexact voter is a

delicate task: if the interval is too large, erroneous values will be accepted as

correct; if the interval is too small, correct values will be rejected as erroneous.

Irrespective of the criterion defined to determine the sameness of two results, there

seem to be difficulties.

Example: Lala [Lal94] reports about the experiences with inexact voting in the

Air Force’s F-16 fly-by-wire control system that uses four loosely synchronized

redundant computational channels: The consensus at the outputs of these channels caused
considerable headaches during the development program in setting appropriate
comparison thresholds in order to avoid nuisance false alarms and yet not miss any real
faults.

Byzantine Resilient Fault-Tolerant Unit. If no assumption about the failure mode

of an FCU can be made and no fault-tolerant global time base is available,

four components are needed to form a fault-tolerant unit (FTU) that can tolerate

a single Byzantine (or malicious) fault. These four components must execute a

Byzantine-resilient agreement protocol to agree on a malicious failure of a single

component. Theoretical studies [Pea80] have shown that these Byzantine agree-

ment protocols have the following requirements to tolerate the Byzantine failures of

k components:

1. An FTU must consist of at least 3k + 1 components.

2. Each component must be connected to all other components of the FTU by k + 1

disjoint communication paths.

3. To detect the malicious components, k + 1 rounds of communication must be

executed among the components. A round of communication requires every

component to send a message to all the other components.

An example of an architecture that tolerates Byzantine failures of the components is

given in Hopkins et al. [Hop78].

6.4.3 The Membership Service

The failure of an FTU must be reported in a consistent manner to all operating

FTUs with a low latency. This is the task of the membership service. A point in

real-time when the membership of a component can be established, is called a

membership point of the component. A small temporal delay between the member-

ship point of a component and the instant when all other components of the

ensemble are informed in a consistent manner about the current membership

is critical for the correct operation of many safety-relevant applications.
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The consistent activation of a never-give-up (NGU) strategy in case the fault

hypothesis is violated is another important function of the membership service.

Example: Consider an intelligent ABS (Antilock Braking System) braking system in a

car with a node of a distributed computer system placed at each wheel. A distributed

algorithm in each of the four nodes, one at each wheel, calculates the brake-force

distribution to the wheels (Fig. 6.8), depending on the position of the brake pedal actua-

ted by the driver. If a wheel node fails or the communication to a wheel computer is

lost, the hydraulic brake-force actuator at this wheel autonomously transits to a defined

state, e.g., in which the wheel is free running. If the other nodes learn about the computer

failure at this wheel within a short latency, e.g., a single control loop cycle of about 2 ms,

then the brake force can be redistributed to the three functioning wheels, and the car can

still be controlled. If, however, the loss of a node is not recognized with such a low latency,

then, the brake force distribution to the wheels, based on the assumptions that all four-wheel

computers are operational, is wrong and the car will go out of control.

ET Architecture. In an ET architecture, messages are sent only when a signi-

ficant event happens at a component. Silence of a component in an ET architecture

means that either no significant event has occurred at the component, or a fail-

silent failure has occurred (the loss of communication or the fail-silent shut-down of

the component). Even if the communication system is assumed to be perfectly reliable,

it is not possible to distinguish when there is no activity at the component from
the situation when a silent component failure occurs in an ET architecture. An

additional time-triggered service, e.g., a periodic watchdog service (see Sect. 9.7.4),

must be implemented in an ET architecture to solve the membership problem.

TT Architecture. In a TT architecture, the periodic message-send times are

the membership points of the sender. Let us assume that a failed component

remains out-of-service for an interval with duration greater than the maximum

time interval between two membership points. Every receiver knows a priori

when a message of a sender is supposed to arrive and interprets the arrival of the

message as a life sign at the membership point of the sender [Kop91]. It is then

possible to conclude, from the arrival of the expected messages at two consecutive

membership points, that the component was alive during the complete interval

delimited by these two membership points (there is a tacit assumption that a

transiently failed node does not recover within this interval). The membership of

the FTUs in a cluster at any point in time can thus be established with a delay of

one round of information exchange. Because the delay of one round of information

exchange is known a priori in a TT architecture, it is possible to derive an a

priori bound for the temporal accuracy of the membership service.

ABS ABS

ABS ABS

Brake

Fig. 6.8 Example of an

intelligent ABS in a car
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6.5 Robustness

6.5.1 The Concept of Robustness

In the domain of embedded systems, we consider a system to be robust, if the
severity of the consequences of a fault is inversely proportional to the probability
of fault occurrence, i.e., faults that are expected to occur frequently should

have only a minor effect on the quality of service of the system. Irrespective of

the concrete type and source of a fault, a robust embedded system will try to recover

from the effects of a fault as quickly as possible in order to minimize the impact

of the fault on the user. As noted above in Sect. 6.1, the immediate consequence of

a fault is an error, i.e., an unintended state. If we detect and correct the error before

it has had a serious effect on the quality of service, we have increased the robustness

of the system. Design for robustness is not concerned with finding the detailed

cause of a failure – this is the task of the diagnostic subsystem – but rather with

the fast restoration of the normal system service after a fault has occurred.

The inherent periodicity of many real-time control systems and multimedia

system helps in the design for robustness. Due to the constrained physical

power of most actuators, a single incorrect output in a control cycle will – in

most cases – not result in an abrupt change of a physical set point. If we can detect

and correct the error within the next control cycle, the effect of the fault on the

control application will be small. Similar arguments hold for multimedia system.

If a single frame contains some incorrect pixels, or even if a complete frame is

lost, but the next frame in sequence is correct again, then the impact of a fault on the

quality of the multimedia experience is limited.

6.5.2 Structure of a Robust System

A robust system consists of at least two subsystems (Fig. 6.9) implemented as

independent FCUs, one operational component that performs the planned

operations and controls the physical environment and a second monitoring compo-
nent that reflects whether the results and the g-state of the operational component

are in agreement with the intentions of the user [Tai03].
In a periodic application such as a control application, every control cycle starts

with reading the g-state and the input data, then the control algorithm is calculated,

Fig. 6.9 Structure of a robust

system
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and finally the new set points and the new g-state are produced (see Fig. 3.9).

A transient fault in one control cycle can only propagate to the next control cycle if

the g-state has been contaminated by the fault. In a robust system, the operational

component must externalize its g-state in every control cycle such that the monitoring

component can check the plausibility of the g-state and perform a corrective action in

case a severe anomaly has been detected in the g-state. The corrective action can

consist of resetting the operational component and restarting it with a repaired g-state.

In a safety-critical application, this two-channel approach – one channel

produces a result and the other channel, the safety monitor, monitors whether the

result is plausible – is absolutely essential. Even if the software has been proven

correct, it cannot be assumed that there will be no transient faults during the

execution of the hardware. The IEC 61508 standard on functional safety requires

such a two-channel approach, one channel for the normal function and another

independent channel to ensure the functional safety of a control system (see also

Sect. 11.4).

In a fail-safe application, the safety monitor has no other authority then to

bring the application to the safe state. A fail-silent failure of the safety monitor

will result in a loss of the safety monitoring function, while a non-fail-silent failure
of the safety monitor will cause a reduction of the availability but will not impact

the safety.

In a fail-operational application, a non-fail silent failure of the safety monitor

has an impact on the safety of the application. Therefore the safety-monitor itself

must be fault-tolerant or at least self-checking in order to eliminate non-fail-silent

failures.

6.6 Component Reintegration

Most computer system faults are transient, i.e., they occur sporadically for a very

short interval, corrupt the state, but do not permanently damage the hardware.

If the service of the system can be reestablished quickly after a transient fault

has occurred, then in most cases the user will not be seriously affected by the

consequences of the fault. In many embedded applications, the fast reintegration of

a failed component is thus of paramount importance and must be supported by

proper architectural mechanisms.

6.6.1 Finding a Reintegration Point

While a failure can occur at an arbitrary moment outside the control of the

system designer, the system designer can plan the proper point of reintegration of

a repaired component. The key issue during the reintegration of a component in a

real-time system is to find a future point in time when the state of the component
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is in synchrony with the component’s environment, i.e., the other components of

the cluster and the physical plant. Because real-time data are invalidated by the

passage of time, rolling back to a past checkpoint can be futile: it is possible and

probable that the progression of time has already invalidated the checkpoint

information (see also Table 4.1).

Reintegration is simplified if the state that must be reloaded into the reintegrating

component is of small size and fits into a single message. Since the size of the

state has a relativeminimum immediately after the completion of an atomic operation,

this is an ideal instant for the reintegration of a component. In Sect. 4.2.3 we have

introduced the notion of the g-state (ground state) to refer to the state at the reintegra-
tion instant. In cyclic systems – many embedded control and multimedia systems are

cyclic – an ideal reintegration instant of a component is at the beginning of a new

cycle. The temporal distance between two consecutive reintegration instants, the

reintegration cycle is then identical to the duration of the control cycle. If the g-state

is empty at the reintegration instant, then the reintegration of a repaired component

is trivial at this moment. In many situations, however, there is no instant during

the lifetime of a component when its g-state is completely empty.

6.6.2 Minimizing the Ground-State

After a cyclic reintegration instant has been established, the g-state at this selected

instant must be analyzed and minimized to simplify the reintegration procedure.

In a first phase, all system data structures within the component must

be investigated to locate any hidden state. In particular, all variables that must be

initialized must be identified and the state of all semaphores and operating system

queues at the reintegration instant must be checked. It is good programming

practice to output the g-state of a task in a special output message when a task

with g-state is detected, and to re-read the g-state of the task when the task is

reactivated. This identifies the g-state and makes it possible to pack all g-states of

all tasks of a component into a g-state message particular to this component.

In a second phase, the identified g-state must be analyzed and minimized.

Figure 6.10 displays a suggested division of the g-state information into three parts:

1. The first part of the g-state consists of input data that can be retrieved from the

instrumentation in the environment. If the instrumentation is state-based and

sends the absolute values of the RT entities (state messages) rather than their

relative values (event messages), a complete scan of all the sensors in the

environment can establish a set of current images in the reintegrating component

and thus resynchronize the component with the external world.

2. The second part of the g-state consists of output data that are in the control of the

computer and can be enforced on the environment. We call the set of the

output data a restart vector. In a number of applications, a restart vector can

be defined at development time. Whenever a component must be reintegrated,
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this restart vector is enforced on the environment to achieve agreement with the

outside world. If different process modes require different restart vectors, a set of

restart vectors can be defined at development time, one for each mode.

3. The third part of the g-state contains g-state data that do not fall into category

(1) or category (2). This part of the g-state must be recovered from some

component-external source: from a replicated component of a fault-tolerant

system, from the monitoring component, or from the operator. In some situa-

tions, a redesign of the process instrumentation may be considered to transform

g-state of category (3) into g-state of category (1).

Example: When a traffic control system is restarted, it is possible to enforce a restart

vector on the traffic lights that sets all cross-road lights first to yellow, and then to red, and

finally turns the main street lights to green. This is a relatively simple way to achieve

synchronization between the external world and the computer system. The alternative,

which involves the reconstruction of the current state of all traffic lights from some log file

that recorded the output commands up to the point of failure, would be more complicated.

In a system with replicated components in an FTU, the g-state data that cannot be

retrieved directly from the environment must be communicated from one compo-

nent of the FTU to the other components of the FTU by means of a g-state message.

In a TT system, sending such a g-state message should be part of the standard

component cycle.

6.6.3 Component Restart

The restart of a component after a failure has been detected by a monitoring

component (Fig. 6.9) can proceed as follows: (1) The monitoring component
sends a trusted reset message to the TII interface of the operational component to

enforce a hardware reset. (2) After the reset, the operational component performs

a self-test and verifies the correctness of its core image (the job) by checking

the provided signatures in the core image data structures. If the core image is

Fig. 6.10 Partitioning of the

g-State
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erroneous, a copy of the static core image must be reloaded from stable storage. (3)

The operational component scans all sensors and waits for a cluster cycle to acquire

all available current information about its environment. After an analysis of this

information, the operational component decides the mode of the controlled object,

and selects the restart vector that must be enforced on the environment. (4) Finally,

after the operational component has received the g-state information that is relevant

at the next reintegration instant from the monitoring component, the operational

component starts its tasks in synchrony with the rest of the cluster and its physical

environment. Depending on the hardware performance and the characteristics of

the real-time operating system, the time interval between the arrival of the reset

message and the arrival of the g-state information message can be significantly

longer than the duration of a reintegration cycle. In this case, the monitoring

component must perform a far-reaching state estimation to establish a relevant g-

state at the proper reintegration point.

Points to Remember

l A fault is the adjudged cause of an error or failure.
l An error is that part of the state of a system that deviates from the intended

(correct) state.
l A failure is an event that denotes a deviation of the actual service from the

intended service, occurring at a particular point in real time.
l The failure rate for permanent failures of an industrial-quality chip is in a range

between 10 and 100 FITS. The failure rate for transient failures is orders of

magnitude higher.
l Information security deals with the authenticity, integrity, confidentiality, privacy

and availability of information and services that are provided by computer system.

The main security concerns in embedded systems are the authenticity and integrity
of data.

l A vulnerability is a deficiency in the design or operation of a computer system

that can lead to a security incident. We call the successful exploitation of a

vulnerability an intrusion.
l The typical attacker proceeds according to the following three phases: access to

the selected subsystem, search for and discovery of a vulnerability, and finally

intrusion and control of the selected subsystem.
l It is widely acknowledged in security research and practice that many security

incidents are caused by human rather than technical failures.
l The basic cryptographic primitives that must be supported in any security

architecture are symmetric key encryption, public key encryption, hash functions,
and random number generation.

l An anomaly is a system state that lies in the grey zone between correct and
erroneous. The detection of anomalies is important, since the occurrence of

an anomaly is an indication that some atypical scenario that may require

immediate corrective action is developing (e.g., the intrusion by an adversary).
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l In a safety-critical system, every single observed anomaly must be scrutinized

in detail until the final cause of the anomaly has been unambiguously identified.
l Failure detection within a system is only possible if the system contains some

form of redundant information about the intended behavior.
l The fault hypothesis states what types of faults must be tolerated by a fault-

tolerant system and divides the fault-space into two domains, the domain of

normal faults (i.e., the faults that must be tolerated) and the domain of rare
faults, i.e., faults that are outside the fault hypotheses and are assumed to be

rare events.
l A rare fault will bring the system into a state that is outside the specified fault

hypothesis and therefore will not be covered by the provided fault-tolerance

mechanisms. Nevertheless, instead of giving up, a never-give-up (NGU) strategy
should be employed to try to bring the system back to a correct state.

l It is up to quality engineering to ensure that FCUs fail independently. Even a

small correlation of the failure rates of FCUs has a tremendous impact on the

overall reliability of a system.
l The purpose of a fault-tolerant unit (FTU) is to mask the failure of a single

FCU inside the FTU. Although a failure of an FCU is masked by the fault-

tolerant mechanism and is thus not visible at the user interface, a permanent

failure of an FCU nevertheless reduces or eliminates any further fault-masking

capability.
l In a triple-modular-redundant (TMR) configuration a fault-tolerant unit (FTU)

consists of three synchronized deterministic FCUs, where each FCU is

composed of a voter and the computational subsystem.
l A membership service consistently reports the operational state of every FTU to

all operating FTUs.
l In many embedded applications, the fast reintegration of a failed component is of

paramount importance andmust be supported by proper architectural mechanisms.
l Design for robustness is not concerned with finding the detailed cause of a

failure – this is the task of the diagnostic subsystem – but rather with the

fast restoration of the normal system service.
l In a safety-critical application a two-channel approach, in which one channel

produces a result and the other channel monitors whether the result is plausible

is absolutely essential.
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Review Questions and Problems

6.1 Give the precise meaning of the terms failure, error, and fault. What are the

characteristics of an FCU?

6.2 What are typical permanent and transient failure rates of VLSI chips?

6.3 What is an anomaly? Why is anomaly detection important?

6.4 Why is a short recovery time from transient faults important?

6.5 What are the basic techniques for error detection? Compare ET systems and

TT systems from the point of view of error detection.

6.6 What is the difference between robustness and fault tolerance? Describe the
structure of a robust system!

6.7 What is the difference between a Heisenbug and a Bohrbug?
6.8 Describe the characteristics of a Byzantine failure! What is an SOS failure?

6.9 Give some examples of security threats! What is a botnet?
6.10 What is the difference between the Bipa model and the Bell-LaPaluda model

for secure systems?

6.11 What steps must be taken in a systematic security analysis? What is a

vulnerability? What is an intrusion?
6.12 What is a membership service? Give a practical example for the need of a

membership service. What is the quality parameter of the membership ser-

vice? How can you implement a membership service in an ET architecture?

6.13 Describe the contents of the fault hypothesis document? What is an NGU

strategy?

6.14 Discuss the different types of faults that can be masked by the replication of

components. Which faults cannot be masked by the replication of components?

6.15 What is required for the implementation of fault-tolerance by TMR?

6.16 What is a restart vector? Give an example.
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Chapter 7

Real-Time Communication

Overview The focus of this chapter is on the architectural view of real-time

communication. The chapter commences by summarizing the requirements of a

real-time communication system: low protocol latency with minimal jitter, the
establishment of a global time base, fast error detection at the receiver, and the

need for temporal error containment by the communication system, such that a

babbling node cannot hinder the communication among the correct nodes. The next

section presents a waistline model of a real-time communication system. At the

center of the waist is the basic message transport service (BMTS) that transports a
message from a sender to a set of receivers within a given latency and with a given

reliability. In real-time systems, the tradeoff between reliability and timeliness has to

remain in the hands of the application and should not be hardwired in the BMTS. The

protocols above the BMTS, called higher-level protocols, implement services that

require the bidirectional exchange of messages such as a simple request-reply
service. The protocols below the BMTS, called lower-level protocols, implement

the basic message transport service. The important topic of flow control, the differ-

ent types of flow control and the phenomenon of thrashing are discussed in the

following section. From the temporal point of view, three different communication

services can be distinguished: event-triggered communication, rate-
constrained communication, and time-triggered communication. The section on

event-triggered communication contains the Ethernet protocol, the CAN protocol,

and the UDP protocol from the Internet suite of protocols. Since there are no

temporal constraints on the sender of event-triggered messages, it is not possible

to provide temporal bounds for latency and jitter, given the limited bandwidth of any

communication system. The rate-constrained protocols provide bounds for latency

and jitter. The protocols covered in this section are the ARINC 629, and ARINC 684

(AFDX). The final section presents the time-triggered protocol TTP, TTEthernet,

and FlexRay. These protocols require the establishment of a global time base among

all communicating nodes. A cycle is assigned to every time-triggered message. The

start of transmission of themessage is triggered exactlywhen the global time reaches

the start of cycle. Time-triggered communication is deterministic and well suited for

the implementation of fault tolerance by the active replication of components.

H. Kopetz, Real-Time Systems: Design Principles for Distributed Embedded Applications,
Real-Time Systems Series, DOI 10.1007/978-1-4419-8237-7_7,
# Springer Science+Business Media, LLC 2011
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7.1 Requirements

The architectural requirements for the communication infrastructure of a

distributed real-time system follow from the discussion about the properties of

real-time data elaborated in the previous chapters. These requirements are substan-

tially different from the requirements of non-real-time communication services.

7.1.1 Timeliness

The most important difference between a real-time communication system and a

non-real-time communication system is the requirement for short message-transport

latency and minimal jitter.

Short Message-Transport Latency. The real-time duration of a distributed real-
time transaction (see Sect. 1.7.3), starting with the reading of sensors and terminat-

ing with the output of the results to an actuator depends on the time needed for the

computations within the components and the time needed for the message transport

among the involved components. This duration should be as small as possible, such
that the dead time in control loops is minimized. It follows that the worst-case
message transport latency of a real-time protocol should be small.

Minimal Jitter. The jitter is the difference between the worst-case message-trans-

port latency and the best-case message-transport latency. A large jitter has a

negative effect on the duration of the action delay (see Sect. 5.5.2) and the precision
of the clock-synchronization (see Sect. 3.4).

Clock Synchronization. A real-time image must be temporally accurate at the

instant of use (see Sect. 5.4). In a distributed system, the temporal accuracy can

only be checked if the duration between the instant of observation of an RT-entity,

observed by the sensor node, and the instant of use, determined by the actuator

node, can be measured. This requires the availability of a global time base of proper

precision among all involved nodes. It is up to the communication system to

establish such a global time and to synchronize the nodes, e.g., by following the

IEEE 1588 standard for clock synchronization. If fault tolerance is required, two

independent self-checking channels must be provided to link an end system to the

fault-tolerant communication infrastructure. The clock synchronization messages

must be provided on both channels in order to tolerate the loss of any one of them.

7.1.2 Dependability

Communication Reliability. In real-time communication, the use of robust channel

encoding, the use of error-correcting codes for forward error correction, or the

deployment of diffusion based algorithms, where replicated copies of a message are
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sent on diverse channels (e.g., frequency hopping in wireless systems), possibly at

different times, are the techniques of choice for improving the communication

reliability. In many non-real-time communication systems, reliability is achieved

by time redundancy, i.e., a lost message is retransmitted. This tradeoff between time

and reliability increases the jitter significantly. This tradeoff should not be part of

the basic message transport service (BMTS), since it is up to the application to

decide if this tradeoff is desired.

Example: In the positive acknowledgment-or-retransmission (PAR) protocol, widely used
in event-triggered non-real-time communication, a sender waits for a given time until it has

received a positive acknowledgement message from the receiver indicating that the previ-

ous message has arrived correctly. In case the timeout elapses before the acknowledgement

message arrives at the sender, the original message is retransmitted. This procedure is

repeated n-times (protocol specific) before a permanent failure of the communication is

reported to the sender. The jitter of the PAR protocol is substantial, since in most cases the

first try will be successful, while in a few cases the message will arrive after n times the

timeout value plus the worst-case message transport latency. Since the timeout value must

be longer than two worst-case message transport latencies (one for the original message and

one for the acknowledgment message), the jitter of PAR is longer than (2n) worst-case
message-transport latencies.

Example: Consider a scenario, where a sensor component sends periodically, e.g., every

millisecond, a message containing an observation of an RT entity to a control component.

In case the message is corrupted or lost, it makes more sense to wait for the next message

that contains a more recent observation than to implement a PAR protocol that will resend

the lost message with the older observation.

Temporal Fault Containment of Components. It is impossible to maintain the
communication among the correct components using a shared communication
channel if the temporal errors caused by a faulty component are not contained.
A shared communication channel must erect temporal firewalls that contain the

temporal faults of a component (a babbling idiot), so that the communication among

the components that are not directly affected by the faulty component is not com-

promised. This requires that the communication system holds information about

the intended (permitted) temporal behavior of a component and can disconnect a

component that violates its temporal specification. If this requirement is not met,

a faulty component can block the communication among the correct components.

Example: A faulty component that sends continuously high-priority messages on a CAN

bus will block the communication among all other correct components and thus cause a

total loss of communication among the correct components.

Error Detection. A message is an atomic unit that either arrives correctly or not at

all. To detect if a message has been corrupted during transport, every message is

required to contain a CRC field of redundant information so the receiver can

validate the correctness of the data field. In a real-time system, the detection of a

corrupted message or of message loss by the receiver is of particular concern.

Example: Error detection on output. Consider a node at a control valve that receives

output commands from a controller node. In case the communication is interrupted because

the wires are cut, the control valve, the receiver, should enter a safe state, e.g., close
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the valve autonomously. The receiver, i.e., the control valve, must detect the loss of

communication autonomously in order to be able to enter the safe state despite the fact

that the wire has been cut.

Example: Error detection on input. Consider a sensor node that periodically sends an

observation to a control node. In case the communication is interrupted because the wires

are cut, the control node, the receiver, must immediately detect the loss of communication.

The failure of a component of a distributed system should be detected by the

communication protocol and should be reported consistently to all remaining

correct components of the ensemble. In real-time systems, the prompt and consis-

tent detection of component failures is the function of a membership service.

End-to-End Acknowledgment. End-to-end acknowledgement about the success or

failure of a distributed action is needed in any scenario where multiple nodes

cooperate to achieve a desired result [Sal84]. In a real-time system, the definitive
end-to-end acknowledgment about the ultimate success or failure of a communica-

tion action can come from a component that is different from the receiver of an

outgoing message. An outgoing message to an actuator in the environment must

cause some intended physical effect in the environment. A sensor component that is

different from the actuator component monitors this intended physical effect. The
result observed by this sensor component is the definite end-to-end acknowledge-

ment of the outgoing message and the intended physical action.

Example: Figure 7.1 shows an example of an end-to-end acknowledgment of the output

message to a control valve by a flow sensor that is connected to a different node.

Example: A wrong end-to-end protocol can have serious consequences, as seen in the

following quote [Sev81, p. 414] regarding the Three Mile Island Nuclear Reactor #2

accident on March 28, 1979: Perhaps the single most important and damaging failure in
the relatively long chain of failures during this accident was that of the Pressure Operated
Relief Valve (PORV) on the pressurizer. The PORV did not close; yet its monitoring light
was signaling green (meaning closed). In this system, the fundamental design principle

never trust an actuator, was violated. The designers assumed that the acknowledged arrival

of a control output signal that commanded the valve to close, implied that the valve was
closed. Since there was an electromechanical fault in the valve, this implication was not

true. A proper end-to-end protocol that mechanically sensed the closed position of the valve

would have avoided this catastrophic false information.
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Fig. 7.1 End-to-end acknowledgment in a real-time system
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Determinism. The behavior of the basic message transport service (BMTS) should

be deterministic such that the order of messages is the same on all channels and

the instants of message arrival of replicated messages that travel on redundant

independent channels are close together. This desired property, which has been

discussed at length in Sect. 5.6, is required for the implementation of fault

tolerance by active redundancy.

Example: If in a fault-tolerant configuration the message order on two independent

communication channels is not the same, then the fault-masking capability may be lost

due to the missing replica determinism.

7.1.3 Flexibility

Many real-time communication systems must support different system configura-

tions that change over time. A real-time protocol should be flexible to accommodate

these changes without requiring a software modification and retesting of the

operational nodes that are not affected by the change. Since the bandwidth of any

communication channel is limited, there exists an upper bound on the increase in

communication traffic that can be handled within the given time constraints.

Topology. The standard communication topology in distributed real-time systems

is multicast, not point-to-point. The same image of an RT entity is needed at a

number of different components, e.g., at the man-machine interface, at a process-

model component, and at an alarm-monitoring component. A message should be

delivered to all receivers of the receiver group within a short and known time

interval.

Dynamic Addition of a Partner. It should be possible to add a new communication

partner dynamically. If this new partner is passive, i.e., it is only receiving messages

but not sending messages, the multicast topology can support this requirement by

adding the new partner to the receiver group. If the new partner is active, i.e., it is
sending messages, then the communication infrastructure should provide the nec-

essary bandwidth without violating the temporal guarantees given to the already

existing partners.

Example: A communication system within a car must support different configurations of

nodes, depending on customer demand. One customer might demand a car with a sunroof

and automatic seats with memory, while another customer might opt for a special air-

conditioning system and a sophisticated anti-theft system. All possible combinations of

nodes must be supported by the communication system without a need for retesting existing

nodes.

7.1.4 Physical Structure

The physical structure of a real-time communication system is determined by

technical needs and economic considerations.
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Example: In the harsh environment of a plant, the physical transmission system must be

more robust than in a benign office environment.

Physical Fault Isolation. The communication system should provide for the physi-

cal isolation of nodes that are placed at different locations in space, such that

common mode node failures, e.g., those caused by a lighting stroke, will not

occur. The transducer circuits that link the wires to the nodes must withstand the

specified high-voltage disturbances. Fiber-optic transmission channels provide for

the best physical isolation.

Example: Consider an airplane with a fly-by-wire system. The nodes that form a fault-

tolerant unit for this critical function should be at different locations within the plane and

connected by well-isolated channels, such that a high-voltage disturbance or a physical

damage of a section of the plane during an incident (e.g., lightning stroke) will not result in

the correlated loss of the safety-critical system function of all replicated nodes.

Low Cost Wiring. In many embedded systems, e.g., in a car or an airplane, the

weight and cost of the wiring harness is substantial. The selection of the communi-

cation protocols and in particular the physical transmission layer is influenced by

the desire to minimize the wiring weight and cost.

7.2 Design Issues

In Chap. 2 we emphasized the need to design a generic model for expressing the
behavior of an embedded system that avoids the characteristics of difficult tasks
(see Table 2.2 on difficult tasks). The communication among the computational

components of a distributed system forms an integral part of the behavior. At the

architecture level we thus need a simple model for describing the communication

that captures the system aspect of the real-time message transport without getting

detracted by the detailed mechanisms and complexities of the implementation of

the transmission channels or the logic of high-level protocols.

7.2.1 A Waistline Communication Model

The waistline model depicted in Fig. 7.2 seems to be fit for this purpose. The center

of the model, the waistline, depicts the basic message transport service (BMTS) that
is provided at the architecture level. Considering the discussion in the previous

chapters, the BMTS should transport a message from a sending component to one

or more receiving components with a high reliability, a small delay, and minimal

jitter (see Sect. 4.3). Since the sender of the message must not be directly impacted

by a failure of the receiver, the message flow of the BMTS must be unidirectional.
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In the literature, the meaning behind the notion of a datagram service comes close

to the semantics of the BMTS, but there are no temporal requirements (e.g., short

transport latency, minimal jitter) for a datagram.

Depending on the temporal properties of this BMTS, we distinguish three types

of messages:

1. Event-triggered messages. The messages are produced sporadically whenever a

significant event occurs at the sender. There is no minimum time between

messages established. No temporal guarantees about the delay between sending

a message and receiving a message can be given. In case the sender produces

more messages than the BMTS can handle, either back-pressure is exercised on

the sender or messages are lost.

2. Rate-constrained messages. The messages are produced sporadically, however

the sender guarantees not to exceed a maximum message rate. Within the

given fault-hypothesis, the BMTS guarantees not to exceed a maximum worst-

case transport latency. The jitter depends on the load of the network and is

bounded by the worst-case transport latency minus the minimum transport

latency.

3. Time-triggered messages. Sender and receiver agree a priori on the exact

instants when messages are sent and received. Within the given fault-hypoth-

esis, the BMTS guarantees that the messages will be delivered at the speci-

fied instants with a jitter that is determined by the precision of the global

time.

There are many different means how to implement the BMTS on wire-bound or

wireless channels by low-level protocols. A given BMTS is characterized by the

transport latency, the jitter, and the reliability of transporting a single message uni-

directionally form a sender to the set of destined receivers.

The BMTS provides the basis for building high-level protocols, such as a

request-reply protocol, a file-transport protocol, or any other rule-based exchange

of message sequences that is captured in a higher-level concept.

Example: A simple high-level protocol is the mentioned request-reply protocol that

consists of two BMTS messages, one from the sender to the receiver and a second related

(but from the point of view of the BMTS independent) BMTS message from the receiver

back to the sender.

different high-level protocols, such
as request-reply or file transfer   

basic message
communication

different implementations
such as wire-bound or wireless

Fig. 7.2 Waistline model of

message transport
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7.2.2 Physical Performance Limitation

Any physical communication channel is characterized by its bandwidth and its

propagation delay. The bandwidth denotes the number of bits that can traverse a

channel in unit time. The length of the channel and the transmission speed of the

wave (electromagnetic, optical) within the channel determine the propagation delay
which is the duration it takes for a single bit to travel from one end of the channel

to the other end. Because the transmission speed of a wave in a cable is approximately

2/3 of the transmission speed of light in vacuum (about 300,000 km/s), it takes a

signal about 5 ms to travel across a cable of 1 km length. The term bit length of a
channel is used to denote the number of bits that can traverse the channel within one

propagation delay.

Example: If the channel bandwidth is 100 Mbit/s and the channel is 200 m long, the bit-

length of the channel is 100 bits, since the propagation delay of this channel is 1 ms.

In a bus system, the data efficiency of any media access protocol on a shared channel

is limited by the need to maintain a minimum time interval of one propagation delay

between two successive messages. Assume the bit length of a channel to be bl bits
and the message length to be m bits. Then an upper bound for the data efficiency of

any media access protocol in a bus system is given by:

data efficiency < m mþ blð Þ=

Example: Consider a 1 km bus with a bandwidth equal to 100Mbits/s. The message length

that is transmitted over this channel is 100 bits. It follows that the bit length of the channel is

500 bits, and the limit to the best achievable data efficiency is 100/(100 + 500) ¼ 16.6%.

If the message length is less than the bit length of the channel, then the best
channel utilization that can be realized with any media access protocol is less than

50%. This physical limit has implications for the design of protocols. If a channel

is long and supports a high bandwidth, it is wasteful to send short messages.

Table 7.1 contains the bit length of a channel as a function of its bandwidth and its

length.

Example: From Table 7.1, we can deduce that if we want to achieve a channel utilization

better than 50% for a 100 m long channel with 1 Gbit/s bandwidth, then the minimum
message length must be larger than 500 bits. In such a scenario, it is waste of bandwidth to

send BMTS messages that are only a few bits long.

7.2.3 Flow Control

Flow control is concerned with the control of the speed of information flow between

a sender and a receiver (or the communication system, in this case the term conges-
tion control is sometimes used) in such a manner that the communication system and

the receiver can keep up with the sender. In any communication scenario, it is the
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receiver or the limited capacity of the communication system rather than the sender

that determines the maximum speed of communication. We distinguish between the

following types of flow control:

Back-pressure flow control. In case the communication system or the sender

cannot accept any further messages the sender is forced to delay the sending of

further messages until the overload condition has disappeared. We say that back-
pressure is exercised on the sender.

Example: In a CAN system a node cannot access the bus if a transmission by another

sender is in progress, i.e., the access protocol at the sender exerts backpressure on the node
that intends to send a message.

Explicit flow control. In explicit flow control (a form of back-pressure flow control)

the receiver sends an explicit acknowledgment message back to the

sender, informing the sender that the sender’s previous message arrived correctly,

and that the receiver is now ready to accept the next message. The most important

protocol with explicit flow control is the well-known Positive-Acknowledgment-or-
Retransmission (PAR) protocol, described in the example of Sect. 7.1.2.

Backpressure flow control and explicit flow control are based on the sometimes-

overlooked assumption that the sender is within the sphere of control (SOC) of the

receiver, i.e., that the receiver can control the transmission speed of the sender (see

Fig. 7.3). This is not the case in many real-time scenarios, since the progress of the

physical process cannot be influenced by the communication protocol.

Example: On August 8, 1993 a prototype of a fly-by-wire fighter plane crashed, because

the plane responded too slowly to the pilot’s commands [Neu95, p.37].

Best-effort flow control. In best effort flow control, the communication system

provides intermediate buffer-storage for messages in case the link for the further

transport of messages to the final receiver is not available. If a buffer overflows,

messages are dropped.

Example: In switched Ethernet, the Ethernet switch contains a buffer storage before the

link to a final receiver. In case this buffer overflows, backpressure is exercised or further

messages are dropped. The duration during which a message has to reside in this buffer is

difficult to predict.

Table 7.1 Bit-length of a channel as a function of channel length and bandwidth

Channel length

and propagation

delay in seconds

Bandwidth of the channel in bits per second and bit length in seconds

10 kbit 100 kbits 1 Mbit 10 Mbit 100 Mbit 1 Gbit 10 Gbit

100 ms 10 m 1 m 100 ns 10 ns 1 ns 100 ps

1 cm – 50 ps <1 <1 <1 <1 <1 <1 <1

10 cm – 500 ps <1 <1 <1 <1 <1 <1 5

1 m – 5 ns <1 <1 <1 <1 <1 5 50

10 m – 50 ns <1 <1 <1 <1 5 50 500

100 m – 500 ns <1 <1 <1 5 50 500 5 k

1 km – 5 ms <1 <1 5 50 500 5 k 50 k

10 km – 50 ms <1 5 50 500 5 k 50 k 500 k
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Best-effort flow control cannot be used in hard real-time systems, since the

uncontrollable delay or the throw away of messages is not acceptable.

Rate-constrained flow control. In rate-constrained flow control, the sender, the

communication system and the receiver agree a priori, i.e., before the communica-

tion starts, on the maximum message rate. The communication system and the

receiver will accept all messages sent by the sender, as long as the sender rate

remains below the agreed maximum.

Implicit flow-control. In implicit flow control, the sender and receiver agree a priori,
i.e., before the communication starts, on the instants when messages are sent and

received. This requires the availability of a global time-base. The sender commits

itself to send a message only at the agreed instants, and the receiver commits itself

to accept all messages sent by the sender, as long as the sender fulfills its obligation.

No acknowledgment messages are exchanged during run time. Error detection is the

responsibility of the receiver that can determine (by looking at its global clock) when

an expected message fails to arrive. Error detection latency is short, since it is

determined by the precision of the clock synchronization. Implicit flow-control is

the most appropriate flow-control strategy for the exchange of real-time data.

7.2.4 Thrashing

The often-observed phenomenon of the throughput of a system decreasing abruptly

with increasing load is called thrashing. Thrashing can be observed in many

systems and is not limited to computer systems.

Example: Consider the example of a traffic system in a large city. The throughput of the

road system increases with increasing traffic up to a certain critical point. When this critical

point is reached, further increase in traffic can lead to a reduction in throughput, or in other

words, a traffic jam.

Many systems can be characterized by a throughput-load dependency as shown in

Fig. 7.4. An ideal system exhibits the load throughput curve labeled ideal in

Fig. 7.4. The throughput increases with increasing load until the saturation point

has been reached. From thereon, the throughput remains constant. A system has a

controlled load-throughput characteristic if the throughput increases monotonically

“Please fly more slowly, I cannot
Computer to Pilot:

follow your commands”

Fig. 7.3 Explicit flow control in a real-time system
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with the load and reaches the maximum throughput asymptotically. If the through-

put increases up to a certain point, the thrashing point, and thereafter decreases

abruptly, we say the system is thrashing.
Real-time systems must be free of the thrashing phenomena. If a real-time

system contains a mechanism that can cause thrashing, then, it is likely that the

system fails in the important rare-event scenarios discussed in Sect. 1.5.

Mechanisms that can cause thrashing. Mechanisms that require a more than

proportional increase in resources as the load increases are prone to cause thrashing.

Two examples of such mechanisms are:

1. A time-monitored retry mechanism (a type of PAR protocol) in a request-reply

protocol: If a communication system slows down because it can barely handle

the offered load, a request-reply protocol reaches its time-outs, and generates

additional load.
2. Operating system services: In a dynamic scheduling environment, the time

needed to find a feasible schedule increases more than linearly as the requested

load reaches the capacity limit. This increase in the amount of scheduling

overhead further decreases the computational resources that are available for

the application tasks.

Similar arguments hold for the overhead required for queue management.

A successful technique to avoid thrashing in explicit flow-control schemes is to

monitor the resource requirements of the system continuously and to exercise a

stringent backpressure flow control at the system boundaries as soon as a decrease

in the throughput is observed.

Example: If too many users try to establish a telephone connection and thereby overload a

switch, the switch exercises backpressure by presenting a busy signal to the users.

Remember that in a real-time system, such a backpressure flow control mechanisms

is not always possible.

Example: Consider a monitoring and control system for an electric power grid. There may

be more than 100,000 different RT entities and alarms that must be monitored continually.

In the case of a rare event, such as a severe thunderstorm when a number of lightning strikes

hit the power lines within a short interval of time, many correlated alarms will occur. The

computer system cannot exercise explicit flow control over these alarms in case the system

enters the thrashing zone. It follows the design must be capable to handle the simultaneous

occurrence of 100,000 different alarms.

Throughput
(handled load)

Offered Load

100%

100 %

Thrashing Point

Controlled

IdealSaturation Point

Fig. 7.4 Throughput-load characteristic
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7.3 Event-Triggered Communication

Figure 7.5 depicts event-triggered communication at the architectural level.

A sender sends a message whenever a significant event (e.g., termination of a

task, an interrupt signal, etc.) occurs at the sender. This message is placed in a

queue at the sender’s site until the basic message transport service (BMTS) is ready

to transport the message to the receiver. The communication channel can be even-

triggered, rate-constrained, or time-triggered. After arrival of the message at the

receiver, the message is placed in a receiver queue until the receiver consumes

the message. Using the CRC field contained in every message, the BMTS checks at

the receiver’s site whether the contents of a message have been corrupted during

transport and simply discards corrupted messages. From the architectural point of

view, a BMTS is characterized by a maximum bandwidth, a transport latency, a

jitter, and a reliability for the transport of correct BMTS messages. These transport

parameters can be characterized by probability distributions.

Whenever queues are involved in a scenario, the possibility of queue overflow

must be considered. Queue overflow will occur if the transmission rate of the sender

is larger than the capacity of the network (overflow of the sender’s queue) or the

delivery rate of the network is larger than the reception rate at the receiver

(overflow of the receiver’s queue). Different event-trigged protocols take different

approaches to the handling of queue overflow.

It is impossible to provide temporal guarantees in an open event-triggered
communication scenario. If every sending component in an open communication

scenario is autonomous and is allowed to start sending a message at any instant,

then it can happen that all sending components send a message to the same receiver

at the same instant (the critical instant), thus overloading the channel to the

receiver. In fielded communication systems, we find three strategies to handle

such a scenario: (1) the communication system stores messages intermediately at

a buffer before the receiver, (2) the communication system exerts backpressure on
the sender, or (3) or the communication system discards some messages. None of

these strategies is acceptable for real-time data.

A lower-level protocol, e.g., a link-level protocol that increases the reliability of
a link at the cost of additional jitter, is not directly visible at the BMTS level –

although its effects, the increased reliability and the increased jitter, are reflected in

the characterization of the BMTS service. When a BMTS message has been sent

Fig. 7.5 Event-triggered communication
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across the Internet, we don’t know what types and how many different low-level

protocols have been activated.

In Sect. 4.3.3 an exactly-once semantics has been demanded for the transmission

of event information. The implementation of an exactly-once semantics requires a
bi-directional information flow between sender and receiver that is not provided at

the BMTS level of our model. In our model, the exactly-once semantics must be

implemented by a higher-level protocol that uses two or more (from the point of

view of the communication service independent) BMTS messages.

7.3.1 Ethernet

Ethernet is the most widely used protocol in the non-real-time world. The original

bus-based Ethernet, controlled by the CSMA/CD (carrier sense multiple access/

collision detection) with exponential back-off access control strategy [Met76] has,

over the years, morphed into a switched Ethernet configuration with star topology,

standardized in IEEE standard 802.3. An Ethernet switch deploys a best-effort flow-
control strategy with a buffer before the link to the final receiver. If this buffer

overflows, further messages to this receiver are discarded. If an exactly-once
semantics must be implemented in an Ethernet system, a higher level protocol

that uses two or more Ethernet messages must be provided. An extension of

standard Ethernet, time-triggered (TT) Ethernet that supports a deterministic mes-
sage transport is described in Sect. 7.5.2.

7.3.2 Controller Area Network

The CAN (Controller Area Network) Protocol developed by Bosch [CAN90]

is a bus-based CSMA/CA (carrier sense multiple access/collision avoidance) pro-

tocol that exercises backpressure flow control on the sender. The CAN message

consists of six fields as depicted in Fig. 7.6. The first field is a 32-bit arbitration
field that contains the message identifier of 29 bits length. (The original CAN had

only a arbitration field of 11 bits, supporting at most 2,024 different message

identifiers.) Then there is a 6-bit control field followed by a data field of between

0–64 bits in length. The data in the first three fields are protected by a 16-bit CRC

field that ensures a Hamming distance of 6. The fields after the CRC are used for an

immediate acknowledgment message.

Field Arbitration Control Data Field CRC A EOF

Bits 32 6 0-64 16 2 7 

Fig. 7.6 Data format of a CAN message
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In CAN, access to the CAN-bus is controlled by an arbitration logic that assumes

the existence of a recessive and a dominant state on the bus such that the dominant

state can overwrite the recessive state. This requires that the propagation delay of

the channel is smaller than the length of a bit-cell of the CAN message (see

Table 7.1). Assume that a 0 is coded into the dominant state and a 1 is coded into

the recessive state. Whenever a node intends to send a message, it puts the first bit

of the arbitration field (i.e., the message identifier) on the channel. In case of a

conflict, the node with a 0 in its first identifier bit wins, and the one with a 1 must

back off. This arbitration continues for all bits of the arbitration field. A node with

all 0 s always wins – this is the bit pattern of the highest priority message. In CAN,

the message identifier thus determines the message priority.

7.3.3 User Datagram Protocol

The user datagram protocol (UDP) is the stateless datagram protocol of the Internet

protocol suite. It is an efficient unreliable uni-directional message protocol that

requires no set-up of transmission channels and supports multi-casting on a local

area network using a best-effort flow-control strategy. Many real-time applications

use UDP because the tradeoff between latency and reliability is not hard-wired in

UDP (in contrast to the Transmission Control Protocol TCP) but can be performed

at the application level, taking account of the application semantics. UDP is also

used for multimedia streaming applications.

7.4 Rate-Constrained Communication

In rate-constrained communication, a minimum guaranteed bandwidth is estab-

lished for each channel. For this minimum bandwidth, the maximum transport
latency and the maximum jitter are guaranteed to be smaller than an upper bound.

If a sender (an end-system) sends more messages than the minimum guaranteed

bandwidth, the communication system will try to transport the messages according

to a best-effort strategy. If it cannot handle the traffic, it will exercise backpressure

flow control on the sender in order to protect the communication system from

overload generated by a misbehaving sender (e.g., a babbling end system).

In order to be able to provide the guarantees, the communication system must

contain information about the guaranteed bandwidth for each sender. This informa-

tion can be contained in static protocol parameters that are pre-configured into the

communication controller a priori or can be loaded into the communication con-

troller dynamically during run-time. Rate constrained communication protocols

provide temporal error detection and protection of the communication system

from babbling idiots.
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Rate-constrained protocols provide a guaranteed maximum transport latency.
The actual transport latency will normally be significantly better (see Table 7.2),

since under normal conditions the global traffic pattern is much smaller than the

assumed peak. Since we cannot predict the instant of message delivery, rate

constrained communication systems are not deterministic according to the defini-

tion of determinism given in Sect. 5.6.1.

7.4.1 Token Protocol

One of the early rate-constrained protocols is the token protocol controlling the

access to a multi-access local area networks (LAN). In a token system, the right to
transmit is contained in a special control message, the token. Whoever has the token

is allowed to transmit. Two time parameters determine the response time of a token

system, the token-hold time THT, denoting the longest time a node may hold the

token, and the token-rotation time TRT, denoting the longest time for a full rotation

of the token. The maximum TRT is the product of the number of nodes and the

THT of each node, which determines the guaranteed bandwidth allocated to a node.
A serious failure in any token system is the loss of the token, e.g., if the station that

possesses the token fails. In such a situation, the network traffic is disrupted until

some other node detects the silence by monitoring a time-out, and generates a new

token. A token system can be structured as a bus or a ring. Token rings were

standardized by IEEE standard 802.5. They have been in wide use some years ago.

7.4.2 Mini-slotting Protocol ARINC 629

In the mini-slotting protocol ARINC 629 [ARI91], the access to a shared bus is

controlled by two time-out parameters, the synchronization gap SG controlling

the entrance to a distributed waiting room, and the terminal gap TG controlling the

access from the waiting room to the bus. The synchronization gap SG is identical

for all nodes, whereas the terminal gap TG, the personality timer, is different for
each node and must be a multiple of the propagation delay (called a mini-slot). The
following relation holds between these time-outs: SG > Max{TGi} for all nodes i.
ARINC 629 is thus a waiting-room protocol similar to the bakery algorithm of

Lamport [Lam74]. In the first phase, the set of nodes that wants to transmit a

message is admitted to the distributed waiting room if there is silence on the bus for

a longer duration than the synchronization gap SG. A node that has entered the

Table 7.2 Transport latency of AFDX on an A 380 configuration [Mil04]

Latency (ms) 0–0.5 0.5–1 1–2 2–3 3–4 4–8 8–13

Percent of traffic 2% 7% 12% 16% 18% 38% 7%
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waiting room and senses silence on the bus for a duration that surpasses its personal

terminal gap TG starts transmitting its message. This protocol logic guarantees that

a node cannot monopolize the bus, since even the node with the shortest terminal

gap TG (the highest priority node) is allowed to send a second message only after

all other nodes that are in the waiting room have finished their message transmis-

sion. Typical values for the time-out parameters on a 2 Mbit/s channel are: terminal

gap (determined by the propagation delay): 4–128 ms, synchronization gap SG

longer than the longest terminal gap. The ARINC 629 protocol is used on the

Boeing 777 airplane.

7.4.3 Avionics Full Duplex Switched Ethernet

Avionics Full Duplex Switched Ethernet (AFDX) is a rate-constrained protocol

based on switched Ethernet. Whereas the message format and the physical layer of

AFDX is in agreement with the Ethernet standard IEEE 802.3, the protocol

allocates a statically defined bandwidth to each sender on a virtual link basis.

A virtual link connects a sender with a specified number of receivers. An AFDX

switch guarantees that

1. The delivery order of messages traveling on a virtual link is the same as the send

order.

2. A minimal bandwidth and a maximum transmission latency and jitter is guar-

anteed on a virtual link basis.

3. There is no data loss due to buffer over-subscription in the switch.

The configuration table of the switch contains state information for every virtual

link and enables the switch to protect the network from nodes that try to overload

the network. The system integrator establishes the virtual links and sets the connec-

tion parameters. AFDX has been standardized under ARINC 664 and used in the

Airbus A 380 and in the Boeing Dreamliner B787.

Table 7.2 shows typical values of the virtual link latency distribution, i.e., the

jitter, on an AFDX configuration for the A 380 [Mil04]. This jitter will cause a

significant action delay (see Sect. 5.5.2 and Problem 5.16).

7.4.4 Audio Video Bus

Physical connections in multimedia systems are predominantly unidirectional and

point-to-point, resulting in substantial wiring harnesses. In order to simplify the

wiring harnesses, special multi-media protocols have been developed. Some of

these special protocols are incompatible with standard IT protocols such as Ether-

net. On the other side, standard switched Ethernet does not provide the temporal

quality of service needed in multi-media applications.
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A communication system for audio-video streaming must support the following

temporal quality of service requirements:

1. It must be possible to precisely synchronize multiple audio video streams that

are generated at different physical locations, e.g., for lip synchronization or

mixing content. The required precision of synchronization is in the microsecond

range.

2. The worst-case transport delay of a multimedia data stream, including buffering

delays at source and destination, must be bounded. The duration for the dynamic

switching from one video stream to another video stream must be in the

millisecond range.

3. The communication resources that are dynamically allocated to a multi-media

stream must remain available for the duration of a session. This requires a

dynamic resource reservation schema.

The IEEE 802.1 audio/video bridging (AVB) task force develops a set of protocols

based on the Ethernet standard that meet the aforementioned requirements.

7.5 Time-Triggered Communication

In a time-triggered communication system, the sender and receiver(s) agree a priori
on a cyclic time-controlled conflict-free communication schedule for the sending of

time-triggered messages. This cyclic communication schedule can be expressed in

the cyclic model of time (see Fig. 3.9 in Sect. 3.3.4), where the send and receive

instants of a message, the message cycles, are represented by a period and phase. In
every period, a message is sent at exactly the same phase. Since the communication

system can be aware of the schedule, it can allocate the resources such that a time-

triggered message is transported without any intermediate delay or buffering.

In some sense, time-triggered communication resembles time-controlled circuit
switching (TCCS), where a time-controlled dedicated channel between a sender and

receiver is established for the short duration of a single message transport.

Example: A coordinated set of traffic lights along a road that establishes periodically a

green wave is a good metaphor for time-controlled circuit switching

We can distinguish the following three types of time-controlled circuit switching:

1. Collision Avoidance Time-Controlled Circuit Switching (CA-TCCS). In CA-

TCCS, it is assumed that there are two message classes, the scheduled time-

triggered messages and the sporadic event-triggered messages. The switch,

knowing beforehand the conflict-free schedule of the time-triggered messages

can shift the event-triggered messages such that conflicts between the event-

triggered and time-triggered messages are avoided.

2. Preemptive Time-Controlled Circuit Switching (P-TCCS). In P-TCCS, it is

assumed that there are two message classes, the scheduled time-triggered
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messages and the sporadic event-triggered messages. In case of a conflict

between an event-triggered message and a time-triggered message, the switch

preempts the event-triggered message and sends the time-triggered message

with a small delay and minimal jitter.

3. Collision Tolerant Time-Controlled Circuit Switching (CT-TCCS). In CT-

TCCS, it is assumed that there are two message classes, the scheduled time-

triggered messages and other uncontrollable messages or interfering signals, a

situation characteristic for wire-less scenarios. The time-triggered communica-

tion controller will send multiple replicas of the same time-triggered message on

diverse frequency channels at different preplanned instants, hoping that one of

the replicas will reach the receiver unharmed.

Within the given fault hypothesis, time-triggered communication is deterministic

according to the definition of determinism in Sect. 5.6.1. The sparse model of
time ensures that messages that are sent at the same active interval of the sparse

time base over independent (replicated) channels will arrive at the receivers at the

same future active interval of the sparse time base. The jitter is bounded by the

precision of the clock synchronization, which is usually in the sub-microsecond range.

Time-triggered control requires that the temporal control signals within a

domain be derived from a single time source. This time source can be the synchro-

nized global time (this is preferable) or the period of a single leading process, i.e.,
a process that establishes a basic period autonomously. In case a leading process

establishes the time, the temporal control signals of all other cycles must be derived

from the period of this leading process. The generation of the schedules is simple, if
all periods are in a harmonic relationship.

Example: If, within single synchronization domain, two processes are activated by

unrelated control signals from two different unsynchronized time sources, then the phase

relationship between these two processes will vary such that eventually the process execu-

tions will overlap.

The precise phase control of time-triggered communication makes it possible to

align the processing actions and communication actions tightly within a distributed

transaction and thus minimize the duration (the dead-time) of a control loop

(see Fig. 3.9). This tight phase control is also performed if a cascade of switches

must be traversed by a time-triggered message.

Example: In the smart power grid timely end-to-end transport guarantees must be

provided over an entire grid [Ter11]. Time-triggered communication minimizes the trans-

port delay, supports fault-tolerance, and thus enables the realization of tight direct digital

control loops over a wide area.

7.5.1 Time-Triggered Protocol

The Time-Triggered Protocol TTP, following the CA-TCCS schema, integrates

time-triggered communication, temporal error detection, a fault-tolerant clock-
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synchronization service, and a membership service in a single protocol with

minimal protocol overhead [Kop93]. The system integrator must set up the

parameters for the transmission slots of the end systems a priori. Event-triggered
communication can be implemented by an overlay protocol on top of TTP.

Fault-tolerant clock synchronization is achieved by taking the difference

between the measured and specified arrival time of every message as a measure

for the difference of the clocks of the sender and receiver and by applying the fault-
tolerant average algorithm (see Sect. 3.4.3) on these differences to calculate a

correction factor for each local clock.

The membership service of TTP informs all connected nodes about the health-
state of every cluster node and of the violation of the fault-hypothesis (should it

occur) such that a never-give up (NGU) strategy can be activated quickly. The

membership is encoded in a membership vector that contains as many bits as there

are nodes in a cluster. A specified bit position of the membership vector is assigned

to each node. When this bit is set to TRUE, a node is operating, if this bit is set to
FALSE, this node is not operating correctly. The membership instant of a node is the

periodic send instant of a message by this node. The state of a TTP controller (C-
state) consists of the current time and the node membership vector. To enforce

agreement on the C-state of all nodes of an ensemble, TTP calculates the CRC at the

sender over the message contents concatenated with the C-state of the sender. The

CRC at the receiver is calculated from the received message contents concatenated

with the C-state of the receiver. If the result of the CRC check at the receiver is

negative then either the message was corrupted during transmission or there is a

disagreement between the C-states of the sender and receiver. In both cases, the

message is discarded and the receiving node assumes that the sender has been

faulty. We call this assumption the self-confidence principle. The self-confidence

principle ensures that a single faulty node cannot kill a correct node in a system that

is assumed to contain at most one faulty node.

If, in the above scenario, the sender has been correct – all other working nodes

have received the message correctly – then the receiving node must have been

faulty. An algorithm must tolerate that a faulty node makes further faulty decisions.

It will send a message with a wrong membership vector and will be taken out of the

membership by all other working nodes. If the receiving node had been right, a

correct decision would have been taken and the sender of the original message

would have been taken out of the membership. TTP operates on two physical

channels and has an independent bus guardian at every node that protects the bus

from babbling idiots – even a faulty node can send a message during its assigned

time slot only. It fails silently outside its time slot.

Considering the servicesTTPprovides it is a very data-efficient protocolwell suited

for applications that require a frequent update of short real-time data elements. Exam-

ples of such applications are industrial controls or the control of robot movements.

TTP has been formally certified for use in airborne system [Rus99]. It is

deployed in the A 380 and the Boeing 787 aircraft and other aerospace and

industrial control applications. TTP has been standardized in 2011 by the Society

of Automotive Engineers (SAE) and is in the standardization process by ARINC.
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7.5.2 Time-Triggered Ethernet

Time-Triggered Ethernet (TTEthernet) is an extension of the switched Ethernet

standard IEEE 802.3 that supports standard Ethernet traffic on one side and

provides a deterministic message transport on the other side [Kop08]. While the

protocol controllers of the end systems can be standard Ethernet controllers, a

TTEthernet switch distinguishes two message classes, the standard (event-trig-

gered) Ethernet messages (ET-messages) and the deterministic time-triggered

messages (TT-messages). Both ET-messages and TT-message formats are fully

compliant with the Ethernet standard. The distinction between ET-messages and

TT-messages can be made on the basis of the contents of the standard Ethernet type
field or on other information in the standard Ethernet header (e.g., the address

fields). The TTEthernet switch transports TT-messages with a constant small delay

without intermediate storage in buffers, while ET-messages are transported during

the time-intervals when no TT traffic is occurring. In case of conflict between an ET

and TT messages, different conflict resolution strategies are applied.

The entry-level TTEthernet system, a 100 Mbit/s system, recognizes TT-

messages based on the contents of the standard Ethernet type field and preempts

an ET-message that is in its way employing the P-TCCS strategy. After the

transport of the TT-message has been finished, the preempted ET-message is

retransmitted autonomously by the entry-level TTEthernet switch. The entry level
TTEthernet switch is stateless and does not require any parameterization on start

up. It is up to the end systems to arrive at a conflict-free schedule for all

TT messages. The entry-level TTEthernet system does not protect the communi-

cation system from babbling end systems, because it is stateless and does not

know what is the intended correct temporal behavior of an end system.

Normal TTEthernet switches are parameterized with state-information that

informs the switch about the periods and phases, the cycles, and the length of all

time-triggered messages. Normal TTEthernet protects the communication system

from babbling end systems. Since the switch has knowledge about the cycles of all

TT-messages it can deploy the CA-TCCS strategy and shift the transmission of an

ET message to its final destination such that a conflict with any TT-message is

avoided. In some TTEthernet switches, the message schedules can be changed

dynamically during the operation of the system.

Fault-tolerant TTEthernet switches provide redundant channels for the imple-

mentation of fault tolerant systems. A fault-tolerant clock synchronization estab-

lishes the required global time of sub-microsecond precision. The determinism

makes the fault-tolerant TTEthernet the communication system of choice for the

implementation of fault-tolerant systems.

TT Ethernet switches support transmission speeds of 100 Mbit/s and 1 Gbit/s.

Some TT-Ethernet switches are certified to the highest-criticality class of Table 11.1.

TTEthernet is in the process of standardization by ARINC. TTEthernet has been

selected as the backbone communication system for the NASA Orion Program

[McC09].
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7.5.3 FlexRay

FlexRay is a communication protocol for automotive applications that has been

designed by the FlexRay consortium [Ber01]. FlexRay is a combination of two

protocols, a time-triggered protocol with fault-tolerant clock synchronization that

is similar to TTP but without the membership service, and an event-triggered
protocol that is similar to the ARINC 629 mini-slotting protocol but without the

waiting room facility. The system integrator must partition the time into two

successive intervals, one for the time-triggered communication and the other one

for the event-triggered communication and set the parameters for the system

operation accordingly. At present FlexRay is deployed in some car models of

Audi and BMW.

Points to Remember

l The architectural requirements for the communication infrastructure of a

distributed real-time system follow from the properties of real-time data that

must be temporally accurate at the instant of use.
l A jitter of the message delay has a negative effect on the duration of the action

delay and the precision of the clock synchronization.
l A shared communication system must detect and contain the temporal faults

of any component (a babbling idiot), so that the communication among

the components that are not directly affected by the faulty component is not

compromised.
l The result of the intended physical action in the environment that is observed by

a sensor component is the final end-to-end acknowledgement of an outgoing

message.
l The behavior of a real-time communication system should be deterministic such

that the order of messages is the same on all channels and the instants of message

arrival of replicated messages that travel on redundant independent channels are

close together.
l The communication topology in distributed real-time systems is multicast, not

point-to-point. The same image of an RT entity is needed at a number of

different components, e.g., at the man-machine interface, at a process-model

component, and at an alarm-monitoring component.
l The basic message transport service (BMTS) that is provided at the architecture

level is at the waist of a waistlinemodel. The BMTS is implemented by (hidden)

low-level protocols and is used to construct application-specific high-level pro-
tocols.

l Whenever a BMTS message has been sent across the Internet, we don’t know

what types and how many different low-level protocols have been activated.
l If an exactly-once semantics must be implemented, a high-level protocol that

uses two or more BMTS messages must be provided.
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l If the message length is less than the bit length of the channel, then the best
channel utilization that can be realized with any media access protocol on a

shared channel, such as a bus, is less than 50%.
l Implicit flow-control is the most appropriate flow-control strategy for the

exchange of real-time data.
l Whenever queues are involved in a scenario, the possibility of queue overflow

must be considered.
l In real-time systems, the tradeoff between reliability and jitter should be per-

formed at the application level.
l Time-triggered communication resembles time-controlled circuit switching

(TCCS), where a time-controlled dedicated channel between the sender and

receiver is established for the short duration of a single message transport.
l TTP integrates time-triggered communication, temporal error detection, a fault-

tolerant clock-synchronization service, and a membership service in a single
protocol with minimal protocol overhead.

l The self-confidence principle ensures that a single faulty node cannot kill a

correct node in a system that is assumed to contain at most one faulty node.
l TTEthernet is an extension of the switched Ethernet standard IEEE 802.3 where

standard (event-triggered) Ethernet messages (ET-messages) and time-triggered

Ethernet messages (TT-messages) are supported.
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The requirements for distributed safety-critical real-time systems onboard vehicles

are analyzed in the SAE report J20056/1 “Class C Application Requirements”

[SAE95]. An interesting report about a Comparison of Bus Architectures for Safety
Critical Embedded Systems has been published by NASA [Rus03]. A rational for

the design of time-triggered Ethernet is published in [Kop08].

Review Questions and Problems

7.1 Compare the requirements of real-time communication systems with those

of non real-time communication systems. What are the most significant

differences?

7.2 Why are application-specific end-to-end protocols needed at the interface

between the computer system and the controlled object?

7.3 Describe the different flow-control strategies. Which subsystem controls the

speed of communication if an explicit flow control schema is deployed?

7.4 Calculate the latency jitter of a high level PAR protocol that allows three

retries, assuming that the lower level protocol used for this implementation

has a dmin of 2 ms and a dmax of 20 ms. Calculate the error detection latency

at the sender.
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7.5 Compare the efficiency of event-triggered and time-triggered communication

protocols at low load and at peak load.

7.6 What mechanisms can lead to thrashing? How should a system react if

thrashing is observed?

7.7 Given a bandwidth of 500 Mbits/s, a channel length of 100 m and a message

length of 80 bits, what is the limit of the protocol efficiency that can be

achieved at the media access level of a bus system?

7.8 How do the nodes in a CAN system decide which node is allowed to access

the bus?

7.9 Explain the role of the time-outs in the ARINC 629 protocol. Is it possible for

a collision to occur on an ARINC 629 bus?

7.10 Describe the different types of time-controlled circuit switching!
7.11 What services are provided by the TTP protocol?
7.12 What is the self-confidence principle?
7.13 Explain the principle of operation of time-triggered Ethernet!
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Chapter 8

Power and Energy Awareness

Overview The increasing growth of energy-aware and power-aware computing is

driven by the following concerns:

l The widespread use of mobile battery-powered devices, where the available

time-for-use depends on the power consumption of the device
l The power dissipation within a large system-on-chip that leads to high internal

temperatures and hot spots that have a negative impact on the chip’s reliability,

possibly physically destroying the chip
l The high cost of the energy for the operation and cooling of large data centers,

and finally
l The general concern about the carbon emissions of the ICT industry, which is of

about the same magnitude as the carbon emissions of the air-transport industry.

In the past, the number of instructions executed by a computer system in a unit of

time (e.g., MIPS or FLOPS) was the important indicator for measuring the perfor-

mance of a system. In the future, the number of instructions executed per unit of

energy (e.g., a joule) will be of equal importance.

It is the objective of this chapter to establish a framework for developing an

understanding for energy-efficient embedded computing. In the first section we

introduce simple models to estimate the energy consumption of different tasks. This

gives the reader an indication of where energy is dissipated and what are the

mechanisms of energy dissipation. Since energy consumption depends very much

on the considered technology, we assume a hypothetical 100 nm CMOS VLSI

technology as the reference for the estimation. The next section focuses on hard-

ware techniques for energy saving, followed by a discussion about the impact of

system architecture decisions on the energy consumption. Software techniques that

help save energy are treated in the following section. In the final section we look at

the energy content and management of batteries and the topic of energy harvesting

from the environment.

H. Kopetz, Real-Time Systems: Design Principles for Distributed Embedded Applications,
Real-Time Systems Series, DOI 10.1007/978-1-4419-8237-7_8,
# Springer Science+Business Media, LLC 2011
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8.1 Power and Energy

The ICT sector is a major consumer of electric energy. At the time of this writing,

the carbon footprint of the ICT sector is in the same order of magnitude as the

carbon footprint of the air-transportation industry and growing at a rate of 10%

per year.

Example: Out of 156 of GW of electric power used for ICT equipment worldwide (about

8% of the worldwide total electricity consumption) in the year 2007, about 28 GW (18%)

are used for the operation of PCs, 22 GW (14%) are used for network equipment, 26 GW

(17%) are used for data centers, 40 GW (25.5%) are used for TV, and 40 GW (25.5%) are

used for other ICT purposes [Her09, p. 162].

8.1.1 Basic Concepts

The concept of energy, initially introduced in the field of mechanics, refers to a

scalar quantity that describes the capability of work that can be performed by a

system. The intensity of the work, that is the energy used up per unit of time, is called

power. Energy is thus the integral of power over time. There exist different forms of

energy, such as potential energy, kinetic energy, thermal energy (heat), electrical
energy, chemical energy, and radiation energy.

The first law of thermodynamics, relating to the conservation of energy, states
that in a closed system, the total sum of all forms of energy is constant. The

transformation of one form of energy to another form of energy is governed by

the second law of thermodynamics that states that thermal energy can only be

partially transformed to other forms of energy. For example, it is impossible to

convert thermal energy to electrical energy with an efficiency of 100%, while the

converse, the transformation of electrical energy to thermal energy can be per-

formed with 100% efficiency.

There exist many different units to measure the amount of energy. We will use

the joule, which is the unit of energy in the mks (meter-kg-second) system. One
joule (J) is defined as the amount of work done by a force of one newton moving a

mass of one kg for a distance of one meter. At the same time a joule is the amount of

energy that is dissipated by the power of one electric watt lasting for one second.
Thermal energy, i.e., heat, is often measured in calories or BTUs (British Thermal
Units). One calorie is defined as the heat needed to increase the temperature of one

gram of water at room temperature by one degree celsius. One calorie corresponds
to about 4.184 joule, while one BTU corresponds to about 1,055 joule.

Example: A gram of gasoline contains chemical energy in the amount of about 44 kJ. An

automotive engine converts about one third to one fourth of this chemical energy to

mechanical energy, i.e., gram of gasoline provides about 12 kJ of mechanical energy.

The rest of the chemical energy is converted to heat. The mechanical energy of 12 kJ is

sufficient to lift a car with a mass of 1,000 kg (or 1 t) about 1.2 m (the potential energy is
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mgh, where g is the gravitational acceleration of 9.8 m/s2 and h the relative altitude in

meters) or to accelerate the car from zero m/s to a speed of 5 m/s (or 18 km/h), considering

that the kinetic energy of the car is mv2/2. If we stop the car by braking, this kinetic energy

is converted into heat by the brakes and tires. In an electric car, a substantial part of this

kinetic energy can be transformed back into electrical energy that can be stored in a battery

for further use.

A battery is a storage device for electric energy. The voltage that exists at the

terminals of a battery can drive electric current through a resistor. In the resistor,

electric energy is converted to heat. If an electric current I flows through a wire with
a resistance R, the voltage drop on the wire will be, according to Ohm’s law

U ¼ IR

and the dissipated electric power is given by

W ¼ UI

where W denotes the dissipated electric power (in watt), I the current (in ampere),
and R the resistance (in ohm). If a constant voltage of U is applied to a system with a

resistance of R over a time of t s, the energy that is dissipated equals

E ¼ tU2=R

Where E is the dissipated energy in joule, t denotes the time in seconds and U and R
denote the voltage and the resistance, respectively.

8.1.2 Energy Estimation

The energy that is needed by a computing device to execute a program can be

expressed as the sum of the following four terms:

Etotal ¼ Ecomp þ Emem þ Ecomm þ EIO

where Etotal is the total energy needed, Ecomp denotes the energy needed to perform

the computations in a CMOS VLSI circuit, Emem denotes the energy consumed by

the memory subsystem, Ecomm denotes the energy required for the communication,

and EIO is the energy consumed by I/O devices, such as a screen. In the following,

we investigate each of these terms in some detail by presenting simplified energy

models. The numerical values of the parameters depend strongly on the technology

that is used. We give some approximate value ranges for the parameters for a

hypothetical 100 nm CMOS technology which is operated with a supply voltage of

1 V in order to enable the reader to develop an understanding for the relative

importance of each one of the terms.
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Computation Energy. The energy Ecomp required for the computations consists of

two parts: (1) the dynamic energy Edynamic that denotes the energy needed to

perform the switching functions in a CMOS VLSI circuit and (2) the static energy

Estatic that is dissipated due to a leakage current drawn from the power supply

irrespective of any switching activity.

The dynamic energy consumption of a switching action of a transistor can be

modeled by a first-order RC network as shown in Fig. 8.1. In such a network,

consisting of a power supply with voltage V (measured in volt), a capacitor C
(measured in farad), and a resistor R (measured in ohm), the voltage on the resistor

R as a function of time t (measured in seconds) after the switching event, is given by

VresðtÞ ¼ Ve�t=t

Where t ¼ RC, which has the dimension of second, is called the time-constant of

the RC network. This time constant characterizes the speed of a switching opera-

tion.

The total energy dissipated during one switching operation is given by the

integral of the product voltage V(t) and current I(t) through the resistor over the

time period from zero to infinity.

E ¼
Z1

0

VðtÞIðtÞdt ¼ V2

R

Z1

0

e�2t RC= dt ¼ 1

2
CV2

The current that flows into the capacitor builds up an electric charge in the capacitor

and does not contribute to the energy dissipation.

Let us set a hypothetical effective capacitance Ceff such that the term Ceff V
2

covers the energy needed to switch all output transitions of an average instruction of

a processor and the short circuit energy Eshort that is dissipated by the brief current

flow from the voltage source to the ground during the switching actions.

Ceff ¼ C=2þ Eshort=V
2

Then the dynamic energy needed for the execution of a single instruction can be

expressed by the simple equation

Edynamic�instruction ¼ Ceff V
2

resistor R

capacitance Cvoltage V

Fig. 8.1 First-order RC

network
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and the dynamic energy needed to run a program with N instructions is given by

Edynamic�program ¼ Ceff V
2N

In the following the term IP-core (intellectual property core) is introduced to refer

to a well-specified functional unit of a system on chip (SoC). An IP-core can be a

complete processor with local scratchpad memory or some other functional unit,

such as an MPEG decoder. Let us now assume that an IP-core executes on the

average one instruction per clock cycle and this IP-core is driven with a frequency f.
Then, the dynamic power dissipation of the IP-core equals

Pdynamic ¼ Ceff V
2f

Example: Assume a program of 1,000 million machine instructions that is executed on a

low-power IP-core with a voltage of 1 V and where an average instruction is characterized

by an effective capacitance of 1 nF. In this example we only consider the dynamic energy.

The execution of one instruction requires an energy of 1 nJ. The dynamic energy that is

needed for the execution of this program is then 1 J. If the IP-core is driven with a frequency

of 500 MHz, then the power dissipation is 0.5 W and the program execution will take 2 s.

There are differentmechanisms that contribute to a steady flowof current (the leakage
current) between the terminals of a transistor, even if the transistor is not performing

any switching action. According to [Ped06], the most important contribution to

the leakage current in a technology which is below 100 nm is the subthreshold
leakage current Isub, which increases with decreasing threshold voltage and with

increasing temperature. Another important effect is the tunnel current flowing from

the gate into the channel, although these are separated by the non-conducting gate

oxide. A quantum-mechanic effect causes electrons to tunnel through the very thin

isolation, and this current grows exponentially as the oxide becomes thinner with

smaller feature sizes. The exponential growth of the leakage current with rising

temperature is of major concern in a submicron device with a low threshold voltage.

This increase of the leakage current can lead to run-away thermal effects that, if not

properly controlled, end with the thermal destruction of the device.

In submicron technologies, the energy dissipation caused by the static leakage

current can approach the same order of magnitude as the energy needed for the

dynamic switching actions [Ped06]. From a system perspective it is therefore

advantageous to structure a hardware system in such a way that subsystems can

be switched off completely if their services are not needed during short intervals.

This is the topic of power gating discussed in Sect. 8.3.3.

Communication. The energy requirement for the transmission of a bit stream from

a sender to a receiver is highly asymmetric. While the sender needs to generate

signals that are strong enough to reach the intended receiver, the receiver must only

sense the (weak) incoming signals.

The energy needed by a sender Etx to transport a bit string of k bytes can be

approximated by

EtxðkÞ ¼ Eo þ k Ec þ 8Etrð Þ
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while the energy needed by the receiver Erx can be approximated by

ErxðkÞ ¼ Eo þ k Ecð Þ

where Eo is the energy needed to set up the sending or receiving of a message and Ec

is the energy dissipated by the communication controller to process 1 byte in the

sender’s and receiver’s circuitry. If we assume that the setup of a transmission

requires ten instructions and the DMA processing of one bit requires the energy-

equivalent for one instruction then Eo is 10 nJ and Ec is 8 nJ in our simple reference

architecture. In addition to the energy required for the reception of a message, a

receiver needs energy during the standby period of waiting for a message to arrive.

If the receive/wait ratio is small, the standby energy consumption can be substan-

tial.

The term Etr denotes the energy needed to transmit a single bit. This term is

different for wired and wireless communication.

For a wired interconnect, this term depends on wire length d, the effective

capacitance of the interconnect per unit length Ceffunit, and the square of voltage V:

Etr ¼ dCeffunitV
2

A typical value for the effective capacitance Ceffunit per unit length of an intercon-

nect on a die is in the order of 1 pF/cm [Smi97, p. 858].

If we connect two IP-cores on a System-on-Chip (SoC) by a Network-on-Chip

(NoC), then we have to find a value for the network capacitanceCeff such thatCeff V
2

denotes the average energy consumption for the sending, transmission, and recep-

tion of a message across the network. This network capacitance Ceff depends on the

implementation technology, the size, the topology, and the control of the NoC. In our

simple model, the energy needed for accessing the data from the sender’s memory,

for the delivery of the message in the receiver’s memory, and for the transport of a

message through the NoC is considered. We assume that the sending, transmission,

and receiving of a 32 bytes message across the NoC requires in the order of 500 nJ.
For wireless communication, the transmit energy per bit can be approximated by

Etr ¼ d2b

where d is the distance between the sender and the receiver. This square relationship
between distance and energy is a gross approximation and must be adapted to the

energy characteristics of the concrete antenna. In many portable devices, such as

mobile phones, the sender adjusts the transmit energy dynamically in order to find

the most appropriate energy level for the actual distance to the receiver. A typical

value for the parameter b is given by [Hei00] as 100 pJ/(bit/m2). If we send a

32 bytes message from a sender to a receiver which is 10 m away, then we need a

transmit energy in the order of about 10 nJ/bit or about 2,500 nJ/bit per message.

Due to partial wave reflections, the transmit power can decrease with the fourth

power of distance in terrestrial communication systems.
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The asymmetry of the energy requirements of a sender and a receiver has a

decisive influence on the design of communication protocols between a base station

that is connected to the electric utility and an energy-constrained mobile battery-

powered device.

Memory. In memory-intensive applications, the energy that is required to access

the memory subsystems can be larger than the energy that is needed for the

computations. The energy that is consumed by a memory subsystem consists of

two terms. The first term is the product of the power that is consumed by an idle

memory subsystem and the time the memory subsystem is powered up. This term

depends on the type and size of the memory and is different for SRAM, DRAM and

non-volatile FLASH memory. The second term consists of the product of the

number of memory accesses and the energy requirement for a single memory

access. In an MPSoC that consists of a number of IP-cores that are connected by

a network-on-chip (NoC) three types of memory accesses can be distinguished:

l Scratchpad memory that is within an IP-core.
l Shared on-chipmemory in a separate IP-core of the SoC. It is accessed via theNoC.
l Off-chip memory, e.g., a large DRAM, that is accessed via the NoC and a

memory gateway to the memory chip.

The energy requirements for accessing each of these three types of memory are

substantially different. Whereas the access for the instruction and data in the

scratchpad memory is considered in the effective capacitance Ceff of an instruction,

the access to the on-chip and off-chip memory requires the exchange of two

messages via the NoC: a request message containing the address to the memory

and a response message with the data from the memory. We make the gross

estimate that a memory access for a 32 bytes block of on-chip memory requires

an energy in the order of 1000 nJ and access to the off-chip memory requires about

twenty times as much, i.e., 20 mJ.

I/O Devices. The energy consumed by I/O devices such as screens, sensors and

actuators is application specific (e.g., size of a screen). It can be substantial.

8.1.3 Thermal Effects and Reliability

The dissipation of electric energy in a device causes a heating of the device.

The temperature rise of the device depends on the amount of energy dissipated,

the heat capacity of the device, and the heat flow between the device and its

environment.

Example: Let us assume an MPSoC with an area of 100 mm2 housing 32 IP-cores

connected by a Network-on-Chip. One of the IP-cores executes the program of the above

example. It is physically contained in a block of 1 mm � 1 mm of a 0.5 mm thick silicon

die. If we assume that this block of silicon, measuring 0.5 mm3, is thermally isolated and
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no heat can be transferred to the block’s environment, then the temperature of our silicon

block will increase by 1�C if about 815 mJ of energy are dissipated in this block. (Silicon

has density of 2.33 g/cm3, and a specific heat of 0.7 J/g�C.) The execution of the program
of the above hypothetical example – generating a heat of 1 J – would thus lead to a

temperature rise of about 1,200�C and result in a hot spot on the die. In reality, such a

temperature rise will not occur, since any temperature difference between two bodies

forces a heat-flow from the warmer body to the colder body that reduces the temperature

difference.

In a VLSI device, the heat flow from a hot spot to the chip’s environment takes

place in two steps. In a first step, the heat of the hot spot flows to the die and

increases the temperature of the entire die. In a second step the heat flows from the

die through the package to the environment. Taking the above example further let

us assume that the complete die is thermally isolated. Then the execution of the

above program, which dissipates 1 J, will lead to an increase of the die temperature

by about 12�C.
The heat flow from the hot spot to the entire die and the exact temperature profile

of the die can be calculated by solving the partial differential equation for heat

transfer. In order to get some gross insight into this phenomenon of heat transfer

from the hot spot to the die, we look at a simple heat flow model where a bar of a
cross-section A and length l is connecting a heat source with temperature Tsource
with a heat sink with temperature Tsink. The stationary heat flow Pheat across the bar

between these two bodies can then expressed by

Pheat ¼ HYA Tsource � Tsinkð Þ=l

where HY is the heat conductivity of the bar.

Example: Let us assume a bar of silicon with a cross section of 1 mm2 and length of

10 mm is linking the heat source with the heat sink. The thermal conductivity HY of silicon

is 150 W/m�C. If the temperature difference between the heat source (the hot spot) and the

heat sink (the rest of the die) is 33�C then a steady heat flow of about 500 mW will develop

(this is the dynamic power dissipated by the execution of the program in the above

example). If the bar has a cross section of 0.25 mm2, then the temperature difference for

transporting 500 mWmust be 132�C. In reality, the temperature difference will be smaller,

since the hot spot is much better embedded in the substrate of the die than expressed by this

simple heat-flow model.

What can we learn from this simple example? Hot spots will only develop if a

substantial amount of power is dissipated in a very small area. For example, let us

assume that a temporary low impedance path between the power rails of a transistor, a

latch-up (which can be corrected by a power-cycle) develops in a small part of a circuit

due to a fault caused by a neutron from ambient cosmic radiation. The current that

dissipates in this path will result in a hot spot that can physically destroy the circuit.

It is therefore expedient to monitor the current drawn by a device and switch off the

power quickly (e.g., within less than 10 ms) if an unexpected current surge is observed.
The temperature difference that develops between the die and the environment

is determined by the power dissipation in the die and the thermal conductivity
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Hpackage of the package. This thermal conductivity Hpackage of a typical chip

package is between 0.1 and 1 W/�C, depending on package geometry, size and

material. Plastic packages have a significantly lower thermal conductivity than

ceramic packages. The temperature difference DT between the environment and

the die can be calculated by

DT ¼ Pdie=Hpackage

where Pdie is the total power dissipated in the die. If the heat flow through the

package is more than 10 W, then a fan should cool the package. The introduction of

fans has a number of disadvantages, such as the additional energy required to

operate the fan, the noise of the fan and the reliability of the mechanical fan. If a

fan fails, overheating might destroy the circuit.

A high substrate temperature has a negative effect on the reliability of a device

and can cause transient and permanent failures. High substrate temperatures change

the timing parameters of the transistors and the circuits. If the specified timing

patterns are violated, transient and data-dependent device failures will occur.

The Arrhenius equation gives a gross estimate for the acceleration of the failure

rate caused by an increase of the temperature of the silicon substrate:

AF ¼ exp
Ea

k

1

Tnormal
� 1

Thigh

� �� �

where AF is the acceleration factor of the failure rate, k is the Boltzmann constant

(8.617 � 10�5 eV/K), Tnormal is the normal substrate temperature (expressed in

Kelvin), Thigh is the high substrate temperature (expressed in Kelvin), and Ea is a

failure-mechanism-specific activation energy (see Table 8.1).

From this equation we can deduce that the failure rate of a device increases

exponentially with the increase of the substrate temperature of the device.

Example: If the temperature of the substrate of a device increases from 50�C (i.e., 323K)

to 100�C (i.e., 373K), and a failure mechanism with an activation energy of 0.5 eV is

assumed, then the failure rate of the device will increase by a factor of about 11.

Table 8.1 Activation energy for different failure mechanisms (Adapted

from [Vig10])

Failure mechanism Activation energy Ea (eV)

Oxide defects, bulk silicon defects 0.3–0.5

Corrosion 0.45

Assembly defects 0.5–0.7

Electromigration 0.6–0.9

Mask defects/photoresist defects 0.7

Contamination 1.0

Charge injection 1.3
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8.2 Hardware Power Reduction Techniques

8.2.1 Device Scaling

The most effective way to reduce the power consumption of CMOS devices is

the scaling of the device parameters, i.e., making the transistors smaller [Fra01].

Table 8.2 depicts the effect of ideal scaling on the different parameters of a CMOS

device. The scaling factor a from one micro-electronic generation to the next is

normally 1=
ffiffiffi
2

p
, i.e., about 0.7, such that the area of a scaled version of a design is

reduced by a factor of 2, the power requirement is reduced by a factor of 2, the speed

is increased by a factor
ffiffiffi
2

p
and the energy needed for the execution of an instruction

(the energy performance) is reduced by 2
ffiffiffi
2

p
. Note from Table 8.2 that ideal device

scaling has no effect on the power density that is dissipated in a given area of the

die. It follows that ideal scaling will not result in a temperature increase of the die.

Example: Let us assume that an IP-core scales down ideally by a factor of 1/
ffiffiffi
2

p
every

2 years. At the start, the IP-core has a size of 16 mm2 and executes 125 MIPS, consuming a

power of 16 W. Eight years later, after four generations of shrinking, this IP-core has a size

of 1 mm2, executes 500 MIPS and consumes a power of 1 W. The energy needed for the

execution of an instruction has been reduced by a factor of 64, while the time performance

has increased by a factor of four.

Device scaling has made it possible to place up to one billion transistors on a

single die. It is thus within the capabilities of the semi-conductor industry to place

a complete system, including processor, memory, and input/output circuitry on a

single die, resulting in a system-on-chip (SoC). Spatial and temporal closeness of

subsystems that are involved in a computation leads to a significant improvement

of the energy efficiency. Spatial locality reduces the effective capacitances of

the switching actions, which implies lower energy needs and faster operations.

Temporal locality reduces the number of cache misses. If subsystems residing on

different chips are integrated on a single die, the significant amount of energy

needed to exchange data and control among chips can be saved.

Example: According to Intel [Int09], the 1996 design of the first teraflop super computer,
consisting of 10,000 Pentium Pro Processors, operated with an energy efficiency of

2MegaFlops/J or 500 nJ per instruction. Ten years later, in 2006, a teraflop research chip

Table 8.2 The effect of ideal device scaling on device parameters

Physical parameter Scaling factor

Channel length, oxide thickness, wiring width a
Electric field in device 1

Voltage a
Capacitance a
RC delay a
Power dissipation a2

Power density 1

Time performance in MIPS 1/a
Energy performance 1/a3
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of Intel containing 80 IP-cores on a single die connected by a Network-on-Chip achieved an

energy efficiency of 16,000MegaFlops/J or 62 pJ/instruction. This is an increase in the energy-

performance by a factor of 8,000within 10 years. Ifwe assume that in 10 years five generations

of scaling are taking place, the increase in the energy-performance in one generation is not

only factor of 2
ffiffiffi
2

p
, the value stipulated by ideal scaling, but by a factor of more than 4. This

additional improvement is caused by the integration of all subsystems on a single die.

Over the last 25 years, device scaling has also had a very beneficial effect on device

reliability. The failure rates of transistors have been reduced even faster than the

increase in the number of transistors on a die, resulting in an increase in chip

reliability despite the fact that many more transistors are contained in a scaled chip.

The MTTF w.r.t. permanent failures of industrial state-of-the art chips is signifi-

cantly lower than 100 FIT [Pau98].

Scaling cannot continue indefinitely because there are limits due to the discrete

structure of matter and quantum mechanical effects, such as electron tunneling. The
reduction in the number of dopants in a transistor increases the statistical variations.

The thermal energy of noise limits the reduction of the supply voltage. If the supply

voltage is higher than stipulated by ideal scaling, then scaling will lead to an

increased thermal stress. In submicron technologies, we have reached the point

where these effects cannot be neglected any more and lead to an increase in the

transient failure rates of chips. Although the permanent failure rate per transistor

may still decrease, this decrease is not compensating the increase in the number of

transistors on the die anymore, causing an increase of the chip failure rate. The

International Technology Roadmap on Semiconductors 2009 [ITR09, p. 15] sum-

marizes these challenges in a single sentence: The ITRS is entering a new era as the
industry begins to address the theoretical limits of CMOS scaling.

8.2.2 Low-Power Hardware Design

Over the past few years, a number of hardware-design techniques have been

developed that help to reduce the power needs of VLSI circuits [Kea07]. In this

section we give a very short overview of some of these techniques.

Clock Gating. In many highly integrated chips, a significant fraction of the total power

is consumed in the distribution network of the execution clock.Oneway to reduce power

in theexecutionclocknetwork is to turnexecutionclocksoffwhenandwhere theyarenot

needed. Clock gating can reduce the power consumption of chips by 20% or more.

Transistor Sizing and Circuit Design. Energy can be saved if the transistor and circuit

design is optimized with the goal to save power instead with the goal to get the optimal

speed.Special sizingof transistorscanhelp toreduce thecapacitance thatmustbeswitched.

Multi-threshold Logic. With present day micro-electronic design tools it is possible

build transistors with different threshold voltages on the same die. High-threshold

transistors have a lower leakage current but are slower than low-threshold transis-

tors. It is thus possible to save dynamic and static power by properly combining

these two types of transistors.
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8.2.3 Voltage and Frequency Scaling

It has been observed that, within limits characteristic for each technology, there is a

nearly linear dependency of frequency on voltage. If the frequency for the operation

of the device is reduced, the voltage can be reduced as well without disturbing the

functionality of the device [Kea07]. Since the power consumption grows linearly

with frequency, but with the square of the voltage, combined voltage and frequency

scaling causes not only a reduction of power, but also a reduction of energy required

to perform a computation.

Example: The Intel XScale® processor can dynamically operate over the voltage range of

0.7–1.75 V and at a frequency range of 150–800 MHz. The highest energy consumption is

6.3 times the lowest energy consumption.

Voltage scaling can be performed in the interval hVthreshold, Vnormali. Since Vnormal

is reduced as a device is scaled to lower dimensions (see Sect. 8.2.1), the range that

is available for voltage scaling in sub-micron devices is reduced and voltage scaling

becomes less effective.

The additional circuitry that is needed to perform software-controlled dynamic

voltage and frequency scaling is substantial. In order to reduce this circuitry, some

designs support only two operating modes: a high-performance operating mode that

maximizes performance and an energy-efficient operating mode that maximizes energy

efficiency. The switchover between these twomodes can be controlled by software. For

example, a laptop can run in the high-performance operating mode if it is connected to

the power grid and in the energy-efficient operating mode if it runs on battery power.

Given that the hardware supports voltage and frequency scaling, the operating

system can integrate power management with real-time scheduling of time-critical

tasks to optimize the overall energy consumption. If theWorst-Case Execution Time
(theWCET)of a task is knownon a processor running at a given frequency and the task

has some slack until it must finish, then the frequency and voltage can be reduced to let

the task complete just in time and save energy. This integrated real-time and power-

management scheduling has to be supported at the level of the operating system.

8.2.4 Sub-threshold Logic

There is an increasing number of applications where ultra-low power consumption

with reduced computational demands is desired. Take the example of the billions

of standby circuits in electronic devices (e.g., television sets) that are continuously

draining power while waiting for a significant event to occur (e.g., a start command

from a remote console or a significant event in a sensor network). The technique of

sub-threshold logic uses the (normally unwanted) sub-threshold leakage current of

a sub-micron device to encode logic functionality. This novel technique has the

potential to design low time-performance devices with a very low power require-

ment [Soe01].
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8.3 System Architecture

Next to device scaling, the following system architecture techniques are most

effective in reducing the energy requirement significantly.

8.3.1 Technology-Agnostic Design

At a high level of abstraction, an application requirement can be expressed by a

platform-independent model (PIM) (see also Sect. 4.4). A PIM describes the

functional and temporal properties of the requested solution without making any

reference to the concrete hardware implementation. For example, when we specify

the functionality and timing of the braking system of a car, we demand that the

proper braking action will start within 2 ms after stepping on the brake pedal. We

say that such a high-level description of an application is technology agnostic.
A PIM can be expressed in a procedural language, e.g., System C, augmented by the

required timing information, e.g., by UML MARTE [OMG08]. The system imple-

menter has then the freedom to select the implementation technology that is most

appropriate for his/her purpose.

In a second step, the PIM must be transformed into a representation that can be

executed on the selected target hardware, resulting in the platform-specific model

(PSM). The target hardware can be either a specific CPU with memory, a Field

Programmable Gate Array (FPGA), or a dedicated Application Specific Integrated

Circuit (ASIC). Although the functional and temporal requirements of the PIM are

satisfied by all of these implementation choices, they differ significantly in their

non-functional properties, such as energy requirements, silicon real-estate, or

reliability. Figure 8.2 gives a gross indication of the energy required to execute a

given computation in the three mentioned technologies. CPU-based computations

have a built-in power overhead for instruction fetch and decoding that is not present

in hardwired logic.
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Fig. 8.2 Power requirement of different implementation technologies (Adapted from [Lau06,

slide 7])
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The technology-agnostic designmakes it possible to change the target hardware of

a single component, e.g., replace a CPU-based component by anASICwithout having

to revalidate the complete system. Such an implementation flexibility is of particular

importance for battery-operated mass-market devices where the initial test version of

the functionality of a component can be realized and tested on a CPU-based imple-

mentation and later transferred to an ASIC for the mass-market production.

The technology-agnostic design makes it possible to address the technology-
obsolescence problem as well. In long-lived applications, such as the control system

on an airplane, the services of the control system must be provided for a long time-

span, e.g., 50 years. During this time-span, the original hardware technology

becomes outdated. Technology-agnostic design makes it possible to change the

hardware and the related transformation of the PIM to the PSM, without having to

change the interfaces to the other subsystems.

8.3.2 Pollack’s Rule

Over the past 20 years we have seen a tremendous performance increase of single

processor systems. New architectural mechanisms, such as pipelining, out-of-order

execution, speculative branching, and many levels of caching havemade it possible to

significantly reduce the execution timeneeded for a sequential programwithout having

to invest in alternative system and software architectures that support a highly parallel

execution environment. However, this performance increase of the sequential proces-

sor has its (energy) price. Fred Pollack from Intel looked at the integer performance

increase of a new micro-architecture against area and power of the previous micro-

architecture, implemented in the sameprocess technology [Bor07]. Pollack found, that

over a number of Intel architectures, starting with the i386 in 1986, the performance of

every subsequent micro-architecture increased only with the square root of the power

or silicon area. This relationship is normally referred to as Pollack’s Rule.
Embedded systems are characterized by an application-inherent parallelism,

i.e., they consist of many concurrent, nearly independent processes. In order to

establish a viable software execution environment for these nearly independent

parallel processes, a complex operating system that provides spatial and temporal

partitioning must be implemented on top of a sequential processor. From the energy

perspective, this is yet another setback. At first, energy is wasted by the execution of

the powerful sequential machine, and then energy is wasted again to provide the

encapsulated parallel execution environments for the support of the parallel pro-

cesses running on this sequential machine.

Example: According to Pollack’s rule, the speed improvement of an IP-core achieved by

advanced micro-architectural mechanisms scales by the square root of two, while the

required energy and the silicon area increase by factor of 2. After 4 generations of micro-

architecture evolutions, an IP-core would have grown 16 times its original size, would

consume 16 times as much energy as the original, and achieve a time-performance improve-

ment of four. The micro-architecture evolution has degraded the energy efficiency by 400%.
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The recent introduction of multi-core systems on chip (MPSoC), where simple

IP-cores are connected by a network-on-chip (NoC), will thus revolutionize the

execution environment for embedded systems. Considering the size of the embed-

ded system market, it can be expected that in the future energy-efficient multi-core

systems that focus on this market will become dominant. The potential for energy

savings of these systems is significant.

An important issue in the design of MPSoCs is related to the structure of

the interconnect among the IP-cores. There are basically two alternatives (1) a

message-based communication infrastructure and (2) the provision of a large shared

memory. Poletti et al. [Pol07] have investigated the energy efficiency of these two

alternatives and come to the conclusion that message-based systems are preferable

if there is a high computation/communication ratio while shared memory outper-

forms message passing if the computation/communication ratio is low. The com-

parative analysis of memory models for chip multiprocessors comes to a similar

conclusion [Lev08]. In many industrial embedded systems the high computation/

communication ratio suggests that message passing is the preferred alternative.

Example: In a premium car of today one can find up to one hundredElectronic Control Units
(ECU) that are connected by a number of low-bandwidth CAN busses. Aggregating some of

these ECUs on a single die of anMPSoC will put very little load on the high-bandwidth NoC.

Message passing has many other advantageous properties over shared memory,

such as function encapsulation, fault containment, error containment, the support of

implementation-agnostic design methods, and the support of power gating.

8.3.3 Power Gating

In a multi-core SoC, consisting of a set of heterogeneous IP-cores interconnected by

a real-time network-on-chip, a well-defined application functionality can be imple-

mented in a dedicated IP-core, i.e., a component (see Chap. 3). Examples for such

an application functionality are resource management, security, MPEG processing,

input–output controllers, external memory manager, etc. If the components interact

with each other via message passing only and do not access a shared memory, then

it is possible to encapsulate a component physically and logically in a small area of

silicon that can be powered down when the services of the component are not

needed, thus saving the dynamic and static power of the component. Normally, the

state (see Sect. 4.2) that is contained in the component will be lost on power-down.

It is therefore expedient to select a power/down power/up point when the state of

the component is empty. Otherwise, the state of the component must be saved.

There are two ways of saving the state, either by hardware techniques or by sending

a message containing the state to another component such that this other component

can save and update the state.

The hardware effort for saving the state transparently can be substantial [Kea07].

On the other side, a distributed architecture that supports robustnessmust support the

dynamic restart of components in case a component has failed due to a transient fault
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(see Chap. 7). This restart must be performed with a temporally accurate component

state. This software-based state restoration mechanism can be used to support the

state restoration required by power gating as well without any additional overhead.

In an MPSoC architecture that consists of a plurality of components that are

connected by a network on chip (NoC), power gating is a very effective technique

to save power. A component that is not in use can be shut down completely, thus not

only saving dynamic power but also the static power. Since static power is increas-

ing substantially as we deploy below 100 nm technology, power gating becomes an

extremely important power-saving technology.

In many devices it is useful to distinguish between twomajor modes of operation:

service mode and sleep mode. In service mode, the full set of device services is

provided and the dynamic power dissipation is dominant. In sleep mode, only the

minimal functionality for activating the device upon arrival of a wake-up signal is

required. In sleep mode the static (leakage) power is of major concern. Power gating

can be very effective in reducing the power demand in sleepmode. Alternatively, the

sleep mode can be implemented in a completely different technology, e.g., in sub-

threshold logic, that starts up the servicemode as soon as a relevant wake-up signal is

recognized. In this case, all components that are involved in the service mode can be

shut down completely while in sleep mode, thus not consuming any power at all.

8.3.4 Real Time Versus Execution Time

It is important to stress the fundamental difference between real-time and execution
time in a distributed real-time system.There is no close relationbetween these two time

bases (See also Sect. 4.1.3 on Temporal Control, which is related to real-time and

Logical Control, which is related to execution time). In an MPSoC, the granularity of

the real-time will be one or two orders of magnitude larger (and correspondingly, the

frequency lower) than the granularity of the execution time at the chip level. Since the

power consumption is proportional to the frequency – see Sect. 8.1.2 – the global real-
time clock distribution network will only consume a small fraction of the power that

would be needed for a global execution time clock distribution network. Establishing a
single global real-time base for the whole MPSoC, but many local asynchronous

execution time bases, one in each IP core of an MPSoC, can itself save a significant

amount of energy and furthermore increase the energy savings potentials of a chip, as

explained in the following paragraphs.

The real-time base makes the nodes of a distributed system aware of the

progression of real-time and provides the basis for the generation of temporal

control signals (see also Sect. 4.1.3). The local real-time clocks should be incre-

mented according to the international standard of time TIA. If no external clock

synchronization is available, real-time is established by a real-time reference clock

that forms the source of the distributed real-time base. The granularity of the global

real-time depends on the precision of the clock synchronization and will be

different at different integration levels. For example, at the chip level, where the

IP-cores of a SoC communicate via a NoC, the local real-time clocks in the IP-cores
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will have a better precision (and consequently a smaller granularity) than the global

real time at the device level, where devices communicate via a local area network

(see Chap. 4 on clock synchronization). At the chip level, the establishment of the

global real-time can be realized by a stand-alone real-time clock distribution

network or it can be integrated into the NoC.

The execution time base drives the algorithmic computations of the nodes and

thus determines the speed of the computation (logical control – see Sect. 4.1.3). In a

large SoC, the energy dissipation of a global execution time clocking system of a

SoC can form a large part of the chip’s energy consumption. In addition, the

location-dependent delay of the central high-frequency timing signals results in a

clock skew that is difficult to control. Furthermore, the individual control of the

voltage and frequency of an IP-core is not possible if all IP-cores operate with the

same clock signal. It makes therefore sense to design each IP-core and the NoC as

an island of synchronicity that generates its clocking signal for the execution time

locally. If the voltage of an IP-core can also be controlled locally, then the IP-core is

an encapsulated subsystem with the capability for local voltage-frequency scaling

and power gating. In the architecture model outlined in Chap. 4, clock-domain

crossing occurs in the message-interface between an IP-core and the NoC, which

must be carefully designed in order to avoid meta-stability problems.

8.4 Software Techniques

The equation E ¼ Ceff V
2N of Sect. 8.1.2 gives the dynamic energy E required for

the execution of a program. There are three parameters in this equation, the

effective capacitance Ceff, the supply voltage V, and the number of instructions N.
Reducing the effective capacitance Ceff and reducing the number of instructions per

task reduces the time needed to complete a computational task. There is thus no

inherent conflict at the software level between designing for energy-performance

and designing for time-performance.

The voltage depends primarily on the hardware technology and can be controlled

by software if dynamic voltage and frequency scaling is supported by the hardware.

The effective capacitance Ceff can be reduced by spatial and temporal locality,
particularly in the memory system. The number of instructions, the instruction
count N, needed to achieve the intended result depends entirely of the software. The
instruction count is the sum of the instructions executed by the system software and
the application software.

8.4.1 System Software

System software consists of the operating system and the middleware. The objec-

tives of a flexible system-software infrastructure versus minimal energy consump-

tion drive the design process in different directions. Many operating systems of the

past have considered flexibility as the key design driver, ignoring the topic of
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energy-performance. In these systems, a long sequence of system-software instruc-

tions must be executed in order to finalize a single application command, such as

the sending of a message.

In battery-operated embedded systems, the energy efficiency of the system

software can be improved by off-line tailoring of the operating system functions

to the specific requirements of the given application. Furthermore, an integrated

resource management strategy that considers timeliness requirements and energy

requirements in a holistic manner is followed.

Whenever hardware resources (processors, memory, caches) are shared among

nearly independent processes, the implicit interactions (e.g., arbitration, cache

reloading, processor switching) increase the energy consumption and make time

and energy estimation more difficult.

The non-availability of a generally accepted architectural style for embedded

systems leads to many property mismatches at the interfaces among subsystems

(e.g., big-endian vs. little-endian) that must be reconciled by the system software,

leading to necessary but unproductive glue software which consumes valuable

energy when executed.

8.4.2 Application Software

Algorithm Design. An algorithm that has been developed from the point of view of

optimal time performance will be different from an algorithm that is developed

from the point of view of optimal energy performance. In contrast to best-effort

systems, where the average execution time of an algorithm is optimized, in real-

time systems, the worst-case execution time of an algorithm is of relevance.

In many real-time applications, such as multimedia or control applications, there

is not always a need for precise results – good approximate results will suffice.

Finding algorithms that give a good approximate result under energy constraints is a

relevant research topic (see also Sect. 10.2.3 on anytime algorithms).
In cloud computing, where some tasks are processed in the cloud (the servers in

the cloud run on power available from the electric utility) and some tasks are

computed locally in a battery-operated mobile device, the tradeoff between the

energy requirement of the algorithms for the local computations and the energy

requirement for the transmission of data to and from the cloud is an important

architectural design issue. Appropriate design tools must support the design explo-

ration of different task allocation strategies to the cloud or to the mobile device.

Algorithm Analysis. Many embedded applications contain a computationally inten-

sive algorithmic segment, called a computational kernel. Profiling the execution of

a program that implements an algorithm can identify the computational kernel. If a

computational kernel is isolated into a self-contained component that puts all

elements of the computational kernel (e.g., processing engine, memory) physically

and temporally close together in an IP-core, then the effective capacity Ceff of the

execution environment can be reduced, thus saving energy. If an identified
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computational kernel is mature, does not change, and is used by many applications,

then it can be transformed to an ASIC IP-core of an MPSoC, resulting in orders of

magnitude energy savings.

Data Structures. The significant energy cost for memory access can be reduced by

the design of data-structures that are optimized from the point of view of energy

efficiency for the specified use cases. For example, a strictly binary time-format,

which can be implemented with a binary counter requires much less energy to

operate than a time-format that is based on the Gregorian Calendar.

8.4.3 Software Tools

Next to the system software, compilers have an important role to play in the design

of low-energy systems. Energy aware compilers can select the instructions for the

target code on the basis of their energy requirements. The energy-aware allocation

of registers is another important issue, since the register file of modern processors is

quite energy intensive

System designers need tools to estimate the power consumption at an early stage

of the design. These tools must be flexible to support different target architectures in

order that design explorations can be carried out. They should be smoothly

integrated in the design environment.

8.5 Energy Sources

There are three main sources of energy that drive embedded systems: energy from

the power grid, energy from a battery, or energy harvested from the environment.

8.5.1 Batteries

Table 8.3 depicts the nominal energy content of different disposable and recharge-

able batteries. The actual amount of energy that can be retrieved from a battery

depends on the discharge pattern. If the requested battery power is highly irregular,

the battery efficiency is reduced and the actual energy that can be drawn out of a

battery can be less than half of the nominal energy [Mar99]. The discharge level of

a rechargeable battery has an influence on the lifetime of the battery, i.e., the

number of times the battery can be recharged before it breaks down.

The efficiency of a rechargeable battery, i.e., the relation energy-input-for-
charging and energy-output-for-use of well-managed batteries is between 75%

and 90% under the assumption that during the charging phase and the use phase
the power that flows into and out of the battery is carefully controlled and matched

to the electrochemical parameters of the battery. If an application has highly
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irregular power characteristics, then an intermediate energy storage device, such as

an ultra-capacitor, must be provided to smoothen the power flow in and out of the

battery. An ultra-capacitor is an electro-chemical capacitor that has a high energy

density when compared to conventional capacitors. It can be used as an intermedi-

ate energy storage device to buffer large power-spikes over a short time.

Example: Let us consider an electric car (example of Sect. 8.1.1) that is driven at a speed

of 30 m/s (108 km/h). All of a sudden the car has to brake abruptly and come to a stop

within 5 s. If regenerative brakes transform the kinetic energy of 450 kJ to electric energy

with an efficiency of 60%, a power spike of 54 kJ/s will develop for 5 s – corresponding to a

current of 135 A in a 400 V system. If the battery cannot absorb this power spike in such a

short time, then an ultra-capacitor must be placed between the brakes and the battery to

smoothen the flow of power back into the battery. It is up the embedded control system to

control the power-flow in and out of the ultra-capacitor and into the battery.

In the last line of Table 8.3 we denote, for comparison purposes, the chemical

energy content of gasoline. Although only at best a third of this chemical energy can

be converted to electrical energy – e.g., by a motor generator set – it is seen that the

energy density of gasoline per unit weight is still more than an order of magnitude

higher than that of the most efficient battery.

8.5.2 Energy Harvesting

The term energy harvesting refers to techniques that transform ambient energy (e.g.,

light, temperature gradients, electric fields, mechanical motion, vibrations, wind,

etc.) to electric energy that can be used to drive low-power electronic devices, such

as a wearable computer or a node in a sensor network. The harvested energy is stored

in a battery that provides a steady flow of current to power the electronic device.

For example, under optimal sunlight conditions photovoltaic cells can produce

15 mW/cm2. Small thermocouples that convert body heat into electricity can

generate 40 mW at 3 V with a 5�C temperature gradient. Piezoelectric transducers

can convert mechanical energy, e.g., vibration or acoustic noise, to electric energy.

In an RFID tag, the receiver circuit is powered by energy harvested from the electric

field of the sender. A typical RFID tag has a power budget of 10 mW(see Table 13.1).

Table 8.3 Energy content of batteries

Battery type Voltage (V) Energy density (J/g) Mass (g) Energy (J)

AA (disposable) 1.5 670 23 15,390

AAA (disposable) 1.5 587 11.5 6,750

Button cell CR2032 (disposable) 3 792 3 2,376

NiCd (rechargeable) 1.2 140

Lead acid (rechargeable) 2.1 140

Lithium ion (rechargeable) 3.6 500

Ultra-capacitor Up to 100

(Gasoline) 44,000
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An electronic device that is powered by energy from its environment becomes

nearly autonomous and can provide a useful service for a long unattended period.

Wireless sensor nodes that operate robustly and autonomously with energy har-

vested from their environment without any battery are useful in many applications:

industrial control, environmental monitoring, surveillance, medical devices that are

implanted into the body, and many more. The development of efficient transducers

to capture the ambient energy and the design of low-power electronics that manages

the energy harvesting process is an active research topic.

Points to Remember

l Energy is defined as the capability of performing work. Power refers to the

intensity of work. Energy is the integral of power over time. Although power and

energy savings are closely related, they are not the same.
l Energy that is needed by a computing device to execute a program can be expressed

as the sum of the following four terms: Etotal ¼ Ecomp + Emem + Ecomm + EIO

where Etotal is the total energy needed, Ecomp denotes the energy needed to perform

the computations in a CMOS VLSI circuit, Emem denotes the energy consumed by

the memory subsystem, Ecomm denotes the energy required for the communication,

and EIO is the energy consumed by I/O devices, such as a screen.
l The dynamic energy needed to run a program with N instructions is given by

E ¼ Ceff V
2N where Ceff is the effective capacitance of an instruction, V is the

supply voltage, and N denotes the number of instructions that must be executed.
l The exponential growth of the leakage current with rising temperature is of

major concern in a submicron device with a low threshold voltage.
l The asymmetry of the energy requirements of a sender and a receiver has a

decisive influence on the design of communication protocols between a base

station connected to the power grid and an energy-constrained mobile battery-

powered device.
l In memory-intensive applications, the energy that is required to access the

memory subsystems can be larger than the energy needed for the computations.
l A high substrate temperature has a negative effect on the reliability of a VLSI

device and can cause transient and permanent failures. Around half of all device

failures are caused by thermal stress.
l The most effective way to reduce the power consumption of CMOS devices is

the scaling of the device parameters, i.e., making the transistors smaller.
l The scaling factor a from one micro-electronic generation to the next is normally

0.7 such that the area of a scaled version of a design is reduced by a factor of 2,

the power requirement is reduced by a factor of 2, the speed is increased by a

factor
ffiffiffi
2

p
and the energy performance increases by 2

ffiffiffi
2

p
.

l The positioning of all subsystems onto a single die (SoC) leads to a significant

reduction of the distances between the transistors in the diverse subsystems (and
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in consequence to a reduction of the capacities of the signal lines) which results

in major energy savings.
l Device scaling cannot go on indefinitely because there are limits that have their

cause in the discrete structure of matter and quantum mechanical effects, such as

electron tunneling.
l If the frequency for the operation of the device is reduced, the voltage can be

reduced as well without disturbing the functionality of the device, resulting in

substantial energy savings.
l Real-time and execution time are two different time bases that are not closely

related.
l A technology-agnostic design methodology makes it possible to move function-

ality from software to hardware with a substantial gain in energy efficiency.
l Pollack’s rule states that micro-architectural advances from one generation to

the next increase the performance of sequential processors only with the square

root of the increase in power or silicon area.
l Spatial locality of computational subsystems reduces the effective capacitance

and thus increases energy efficiency.
l The most important contribution of software to energy efficiency is a reduction

of the number and types of statements that must be executed to achieve the

desired results.
l The actual amount of energy that can be retrieved from a battery depends on the

discharge pattern. If the requested battery power is highly irregular, the battery

efficiency is reduced and the actual energy that can be drawn out of a battery can

be less than half of the nominal energy.
l Energy harvesting refers to techniques that transform ambient energy (e.g.,

photovoltaic, temperature gradients, electric fields, mechanical motion, vibra-

tions, wind, etc.) to electric energy that can be used to drive low-power elec-

tronic devices, such as a wearable computer or a node in a sensor network.
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Review Questions and Problems

8.1 Explain the difference between power and energy. Give an example where a

reduction of the power leads to an increase of energy needed to complete a

computation.
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8.2 How many Joule are contained in a calorie or in a kWh?

8.3 Calculate the dynamic energy of a program execution if the program contains

1,000,000 instructions, the supply voltage is 1 V, and the effective capacitance

of an average instruction is 1 nF.

8.4 What is static energy? How does static energy change with temperature?

8.5 How much energy is required for access to the scratchpad memory, the on-chip

memory, and the off-chip memory in the reference architecture introduced in

this chapter?

8.6 A sensor node executes 100,000 instructions per second (supply voltage is 1 V

and effective capacitance on an instruction is 1 nF) and sends every second a

message with a length of 32 bytes to its neighbor node, which is 10 m away.

The voltage of the transmitter is 3 V. How much power is needed to drive the

sensor node? How many hours will the sensor node operate if the power supply

contains two AAA batteries?

8.7 A processor has two operating modes, a time-performance optimized mode

characterized by a voltage of 2 V and a frequency of 500 MHz and an energy-

optimized mode characterized by a voltage of 1 V and a frequency of 200 MHz.

The effective capacity of an instruction is 1 nF. What is the power requirement

in each of the two modes?

8.8 A Lithium-Ion laptop battery weighs 380 g. How long will a battery-load last if

the laptop has a power demand of 10 W?
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Chapter 9

Real-Time Operating Systems

Overview In a component-based distributed real-time system we distinguish two

levels of system administration, the coordination of the message-based communica-

tion and resource allocation among the components and the establishment, coordi-

nation, and control of the concurrent tasks within each one of the components. The

focus of this chapter is on the operating system and middleware functions within a

component.

In case the software core image is not permanently residing in a component (e.g.,

in read-only memory), mechanisms must be provided for a secure boot of the

component software via the technology-independent interface. Control mechanisms

must be made available to reset, start, and control the execution of the component

software at run-time. The softwarewithin a component will normally be organized in

a set of concurrent tasks. Task management and inter-component task interactions

have to be designed carefully in order to ensure temporal predictability and deter-
minism. The proper handling of time and time-related signals is of special importance

in real-time operating systems. The operating systemmust also support the program-

mer in establishing new message communication channels at run time and in

controlling the access to the message-based interfaces of the components. Domain

specific higher-level protocols, such as a simple request-reply protocol, that consist
of a sequence of rule-based message exchanges, should be implemented in the

middleware of a component. Finally, the operating systemmust providemechanisms

to access the local process input/output interfaces that connect a component to the

physical plant. Since the value domain and the time-domain of the RT-entities in the

physical plant are dense, but the representation of the values and times inside the

computer is discrete, some inaccuracy in the representation of values and times

inside the computer system cannot be avoided. In order to reduce the effects of these

representation inaccuracies and to establish a consistent (but not fully faithful)model

of the physical plant inside the computer system, agreement protocols must be

executed at the interface between the physical world and cyberspace to create a

consistent digital image of the external world inside the distributed computer system.

A real-time operating system (OS) within a component must be temporally

predictable. In contrast to operating systems for personal computers, a real-time
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OS should be deterministic und support the implementation of fault-tolerance by

active replication. In safety-critical applications, the OS must be certified. Since the

certification of the behavior of a dynamic control structure is difficult, dynamic

mechanisms should be avoided wherever possible in safety-critical systems.

9.1 Inter-Component Communication

The information exchange of a component with its environment, i.e., other compo-

nents and the physical plant, is realized exclusively across the four message-based

interfaces introduced in Sect. 4.4. It is up the generic middleware and the compo-

nent’s operating system to manage the access to these four message interfaces for

inter-component communication. The TII, the LIF and the TDI are discussed in this

section, while the Local Interface is discussed in the section on process input/output.

9.1.1 Technology Independent Interface

In some sense, the technology independent interface (TII) is a meta-level interface

that brings a new component out of the core-image of the software, the job, and the
given embodiment, the component hardware into existence. The purpose of the TII
is the configuration of the component and the control of the execution of the

software within a component. The component hardware must provide a dedicated

TII port for the secure download of a new software image onto a component.

Periodically, the g-state (see Sect. 4.2.3) of the component should be published at

the TII in order to be able to check the contents of the g-state by a dedicated

diagnostic component. A further TII port directly connected to the component

hardware must allow the resetting of the component hardware and the restart of

the component software at the next reintegration point with a relevant g-state that is

contained in the reset message. The TII is also used to control the voltage and

frequency of the component hardware, provided the given hardware supports

voltage-frequency scaling. Since malicious TII messages have the potential to

destroy the correct operation of a component, the authenticity and integrity of all

messages that are sent to the TII interface must be assured.

9.1.2 Linking Interface

The linking interface (LIF) of a component is the interface where the services of the

component are provided during normal operation. It is the most important interface

from the point of view of operation and of composability of the components. The

LIF has been discussed extensively in Sect. 4.6.
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9.1.3 Technology Dependent Debug Interface

In the domain of VLSI design, it is common practice to provide a dedicated

interface port for testing and debugging, known as the JTAG port that has been

standardized in IEEE standard 1149.1. Such a debugging port, the technology

dependent debug interface (TDI), supports a detailed view inside a component

that is needed by a component-designer to monitor and change the internal vari-

ables of a component that are not visible at any one of the other interfaces. The

component-local OS should support such a testing and debugging interface.

9.1.4 Generic Middleware

The software structure within a component is depicted in Fig. 9.1. Between the local

hardware-specific real-time operating system and the application software is the

generic middleware (GM). The execution control messages that arrive at the TII

(e.g., start task, terminate task, or reset the component hardware and restart the
component with a relevant g-state) or are produced at the TII (e.g., periodic
publication of the g-state) are interpreted inside a component by the standardized

generic middleware (GM). The application software, written in a high-level lan-

guage, accesses the operational message-based interfaces (the LIF and the local

interface) by API system calls. The GM and the task-local operating system must

manage the API system calls and the messages that arrive at the LIF and the

commands that arrive via the TII messages. While the task-local operating system

may be specific to a given component hardware, the GM layer provides standar-

dized services, processes the standardized system control messages, and imple-

ments higher-level protocols.

Example: A high-level time-monitored request-reply protocol that is a unique concept at
the level of the API requires two or more independent messages at the BMTS level and a set

of local timer and operating system calls for its implementation. The GM implements this

high-level protocol. It keeps track of all relevant messages and coordinates the timeouts and

operating system calls.

local interface
to process I/O

application software

application programming interface (API)

generic middleware (GM)

local operating system
(hardware specific)

TIILIF

Fig. 9.1 Software structure

within a component
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9.2 Task Management

In our model, the component software is assumed to be a unit of design, and a whole
component is the smallest unit of fault-containment. The concurrent tasks within a

component are cooperative and not competitive. Since the whole component is a

unit of failure, it is not justified to design and implement resource intensive

mechanisms to protect the component-internal tasks from each other. The compo-

nent-internal operating system is thus a lightweight operating system that manages

the task execution and the resource allocation inside a component.

A task is the execution of a sequential program. It starts with reading of input data

and of its internal state and terminates with the production of the results and updated

internal state. A task that does not have an internal state at its point of invocation

is called a stateless task; otherwise, it is called a statefull task. Task management is
concerned with the initialization, execution, monitoring, error handling, interaction,

and termination of tasks.

9.2.1 Simple Tasks

If there is no synchronization point within a task, we call it a simple task (S-task),
i.e., whenever an S-task is started, it can continue until its termination point is

reached, provided the CPU is allocated to the task. Because an S-task cannot be

blocked within the body of the task by waiting for an event external to the S-task,

the execution time of an S-task is not directly dependent on the progress of other

tasks in the node and can be determined in isolation. It is possible for the execution
time of an S-task to be extended by indirect interactions, such as the preemption of

the task execution by a task with higher priority.

Depending on the triggering signal for the activation of a task, we distinguish

time-triggered (T T) tasks and (ET) event-triggered tasks. A cycle (see Sect. 3.3.4)
is assigned to every TT-task and the task execution is started whenever the global

time reaches the start of a new cycle. Event-triggered tasks are started whenever a

start-event for the task occurs. A start event can be the completion of another task or

an external event that is relayed to the operating system by an incoming message or

by the interrupt mechanism.

In an entirely time-triggered system, off-line scheduling tools establish the

temporal control structure of all tasks a priori. This temporal control structure is

encoded in a Task-Descriptor List (TADL) that contains the cyclic schedule for all
activities of the node (Fig. 9.2). This schedule considers the required precedence

and mutual exclusion relationships among the tasks such that an explicit coordina-

tion of the tasks by the operating system at run time to guarantee mutual exclusion

is not necessary.

Whenever the time reaches an entry point of the TADL, the dispatcher is

activated. It performs the action that has been planned for this instant. If a task is
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started, the operating system informs the task of its activation time, which is

synchronized within the cluster. After task termination, the operating system

makes the results of the task available to other tasks.

The application program interface (API) of an S-task in a TT system consists of

three data structures and two operating system calls. The data structures are the

input data structure, the output data structure, and the g-state data structure of

the task (which is empty, in case the task is stateless). The system calls are

TERMINATE TASK and ERROR. The TERMINATE TASK system call is exe-

cuted by the task whenever the task has reached its normal termination point. In

the case of an error that cannot be handled within the application task, the task

terminates its operation with the ERROR system call.

In an event-triggered system, the evolving application scenario determines the

sequence of task executions dynamically. Whenever a significant event happens, a

task is released to the ready state, and the dynamic task scheduler is invoked. It is up

to the scheduler to decide at run-time, which one of the ready tasks is selected for

the next service by the CPU. Different dynamic algorithms for solving the schedul-

ing problem are discussed in the following chapter. The WCET (Worst-Case
Execution Time) of the scheduler contributes to the WCAO (Worst-Case Adminis-
trative Overhead) of the operating system.

Significant events that cause the activation of an ET task can be:

1. An event from the node’s environment, i.e., the arrival of a message or an

interrupt from the controlled object, or

2. A significant event inside the component, i.e., the termination of a task or some

other condition within a currently executing task, or

3. The progression of the clock to a specified instant. This instant can be specified

either statically or dynamically.

An ET operating system that supports non-preemptive S-tasks will take a new

scheduling decision after the currently running task has terminated. This simplifies

task management for the operating system but severely restricts its responsiveness.

If a significant event arrives immediately after the longest task has been scheduled,

this event will not be considered until this longest task has completed.

In an RT operating system that supports task preemption, each occurrence of a

significant event can potentially activate a new task and cause an immediate inter-

ruption of the currently executing task. Depending on the outcome of the dynamic

scheduling algorithm, the new task will be selected for execution or the interrupted

action WCET

start T1

send M5

stop T1

start T3

send M3

12

20

time

10

38

17

22

47 dispatcher

Fig. 9.2 Task descriptor list

(TADL) in a TT operating

system
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task will be continued. Data conflicts between concurrently executing S-tasks can be

avoided if the operating system copies all input data required by this task from the

global data area into a private data area of the task at the time of task invocation.

If components are replicated, care must be taken that the preemption points at all

replicas is at the same statement, otherwise replica determinism may be lost.

The API of an operating system that supports event-triggered S-tasks requires

more system calls than an operating system that only supports time-triggered tasks.

Along with the data structures and the already introduced system calls of a TT

system, the operating system must provide system calls to ACTIVATE (make

ready) a new task, either immediately or at some future point in time. Another

system call is needed to DEACTIVATE an already activated task.

9.2.2 Trigger Tasks

In a TT system, control always remains within the computer system. To recognize

significant state changes outside the computer, a TT system must regularly monitor

the state of the environment. A trigger task is a time-triggered S-task that evaluates

a trigger condition on a set of temporally accurate state variables that reflect the

current state of the environment. The result of a trigger task can be a control signal

that activates another application task. Since the states, either external or internal,

are sampled at the frequency of the trigger task, only those states with a duration

longer than the sampling period of the trigger task are guaranteed to be observed.

Short-lived states, e.g., the push of a button, must be stored in a memory element (e.

g., in the interface) for a duration that is longer than the sampling period of the

trigger task. The periodic trigger task generates an administrative overhead in a TT

system. The period of the trigger task must be smaller than the laxity (i.e., the

difference between deadline and execution time) of an RT transaction that is

activated by an event in the environment. If the laxity of the RT transaction is

very small (<1 ms), the overhead associated with a trigger task can become

intolerable and the implementation of an interrupt is needed.

9.2.3 Complex Tasks

A task is called a complex task (C-Task) if it contains a blocking synchronization

statement (e.g., a semaphore wait operation) within the task body. Such a wait
operation may be required because the task must wait until a condition outside the

task is satisfied, e.g., until another task has finished updating a common data

structure or until input from a terminal has arrived. If a common data structure is

implemented as a protected shared object, only one task may update the data at any

particular moment (mutual exclusion). All other tasks must be delayed by the wait
operation until the currently active task finishes its critical section. The worst-case

execution time of a complex task in a node is therefore a global issue because it

220 9 Real-Time Operating Systems



depends directly on the progress of the other tasks within the node or within the

environment of the node.

The WCET of a C-task cannot be determined independently of the other tasks in

the node. It can depend on the occurrence of an event in the node environment, as

seen from the example of waiting for an input message. The timing analysis is not a

local issue of a single task anymore; it becomes a global system issue. It is impossi-

ble to give an upper bound for theWCET of a C-task by analyzing the task code only.

The application programming interface of a C-task is more complex than that of

S-tasks. In addition to the three data structures already introduced, i.e., the input
data structure, the output data structure, and the g-state data structure, the global
data structures that are accessed at the blocking point must be defined. System

calls must be provided that handle a WAIT-FOR-EVENT and a SIGNAL-EVENT.

After the execution of the WAIT-FOR-EVENT, the task enters the blocked state

and waits in the queue. The event occurrence releases the task from the blocked

state. It must be monitored by a time-out task to avoid permanent blocking.

The time-out task must be deactivated in case the awaited event occurs within the

time-out period, otherwise the blocked task must be killed.

9.3 The Dual Role of Time

A real-time image must be temporally accurate at the instant of use (see Sect. 5.4).
In a distributed system, the temporal accuracy can only be checked if the duration

between the instant of observation of a RT-entity, observed by the sensor node, and
the instant of use, determined by the actuator node, can be measured. This requires

the availability of a global time base of proper precision among all involved nodes.

If fault tolerance is required, two independent self-checking channels must be

provided to link an end system to the fault-tolerant communication infrastructure.

The clock synchronization messages must be provided on both channels in order to

tolerate the loss of any one of the channels.

Every I/O signal has two dimensions, the value dimension and the temporal

dimension. The value dimension relates to the value of the I/O signal. The temporal

dimension relates to the instant when the value was captured from the environment

or released to the environment.

Example: In the context of hardware design, the value dimension is concerned with the

contents of a register and the temporal dimension is concerned with the trigger signal, i.e.,
the control signal that determines when the contents of an I/O register are transferred to

another subsystem.

An event that happens in the environment of a real-time computer can be looked

upon from two different timing perspectives:

1. It defines the instant of a value change of an RT entity in the domain of time. The

precise knowledge of this instant is an important input for the later analysis of
the consequences of the event (time as data).
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2. It may demand immediate action by the computer system to react as soon as

possible to this event (time as control).

It is important to distinguish these two different roles of time. In the majority of

situations, it is sufficient to treat time as data and only in the minority of cases, an

immediate action of a computer system is required (time as control).

Example: Consider a computer system that must measure the time interval between start
and finish during a downhill skiing competition. In this application it is sufficient to treat

time as data and to record the precise time of occurrence of the start event and finish event.
The messages that contain these two instants are transported to another computer that later

calculates the difference. The situation of a train-control system that recognizes a red alarm

signal, meaning the train should stop immediately, is different. Here, an immediate action is

required as a consequence of the event occurrence. The occurrence of the event must

initiate a control action without delay.

9.3.1 Time as Data

The implementation of time as data is simple if a global time-base of known

precision is available in the distributed system. The observing component must

include the timestamp of event occurrence in the observation message. We call a

message that contains the timestamp of an event a timed message. The timed

message can be processed at a later time and does not require any dynamic data-

dependent modification of the temporal control structure. Alternatively, if a field

bus communication protocol with a known constant delay is used, the time of

message arrival, corrected by this known delay, can be used to establish the send

time of the message.

The same technique of timed messages can be used on the output side. If an

output signal must be invoked on the environment at a precise instant with a

precision much finer than the jitter of the output messages, a timed output message
can be sent to the node controlling the actuator. This node interprets the time in the

message and acts on the environment precisely at the intended instant.

In a TT system that exchanges messages at a priori known instants with a fixed

period between messages, the representation of time in a timed message can take

advantage of this a priori information. The time value can be coded in fractions of

the period of the message, thus increasing the data efficiency. For example, if an

observation message is exchanged every 100 ms, a 7 bit time representation of time

relative to the start of the period will identify the event with a granularity of better

than 1 ms. Such a 7-bit representation of time, along with the additional bit to

denote the event occurrence, can be packed into a single byte. Such a compact

representation of the instant of event occurrence is very useful in alarm monitoring

systems, where thousands of alarms are periodically queried by a cyclic trigger task.

The cycle of the trigger task determines the maximum delay of an alarm report

(time as control), while the resolution of the timestamp informs about the exact

occurrence of the alarm event (time as data) in the last cycle.
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Example: In a single periodic TT-Ethernet message with a data field of 1,000 bytes and

cycle time of 10 ms, 1,000 alarms can be encoded in a single message with a worst-case

reaction time of 10 ms and an alarm resolution time of better than 100 ms. In a 100 Mbit/

s Ethernet system, these periodic alarm messages will generate a (background) system load

of less than 1% of the network capacity. Such an alarm reporting system will not cause any

increase in load if all 1,000 alarms occur at the same instant. If, in an event-triggered

system, a 100 byte Ethernet message is sent whenever an alarm occurs, then the peak-load

of 1,000 alarm messages will generate a load of 10% of the network capacity and a worst-

case reaction time of 100 ms.

9.3.2 Time as Control

Time as control is more difficult to handle than time as data, because it may

sometimes require a dynamic data-dependent modification of the temporal control

structure. It is prudent to scrutinize the application requirements carefully to

identify those cases where such a dynamic rescheduling of the tasks is absolutely

necessary.

If an event requires immediate action, the worst-case delay of the message

transmission is a critical parameter. In an event-triggered protocol such as CAN,

the message priorities are used to resolve access conflicts to the common bus that

result from nearly simultaneous events. The worst-case delay of a particular

message can be calculated by taking the peak-load activation pattern of the message

system into account [Tin95].

Example: The prompt reaction to an emergency shutdown request requires time to act as

control. Assume that the emergency message is the highest priority message in a CAN

system. In a CAN system, the worst-case delay of the highest priority message is bounded

by the transmission duration of the longest message (which is about 100 bits), because a

message transmission cannot be preempted.

9.4 Inter-task Interactions

Inter-task interactions are needed to exchange data among concurrently executing

tasks inside a component such that progress towards the common goal can be

achieved. There are two principal means to exchange data among a set of concur-

rently executing tasks: (1) by the exchange of messages and (2) by providing a

shared region of data that can be accessed by more than one task.

Within a component, shared data structures are widely used since this form of

inter-task interaction can be implemented efficiently in a single component where

the tasks cooperate. However, care must be taken that the integrity of data that is

read or written concurrently by more than one task is maintained. Figure 9.3 depicts

the problem. Two tasks, T1 and T2 access the same critical region of data. We call
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the interval during the program execution during which the critical region of data is

accessed the critical section of a task. If the critical sections of tasks overlap, bad

things may occur. If the shared data is read by one task while it is modified by

another task, then the reader may read inconsistent data. If the critical sections of

two or more writing tasks overlap, the data may be corrupted.

The following three techniques can be applied to solve the problem:

1. Coordinated task schedules

2. The non-blocking write protocol

3. Semaphore operations

9.4.1 Coordinated Static Schedules

In a time-triggered system, the task schedules can be constructed in such a way that

critical sections of tasks do not overlap. This is a very effective way to solve the

problem, because:

1. The overhead of guaranteeing mutual exclusion is minimal and predictable.

2. The solution is deterministic.

Wherever possible, this solution should be selected.

9.4.2 The Non-blocking Write Protocol

If, however, the tasks with the critical sections are event-triggered, we cannot

design conflict-free coordinated task schedules a priori. The non-blocking write
(NBW) protocol is an example for a lock-free real-time protocol [Kop93a] that

ensures data integrity of one or more readers if only a single task is writing into the

critical region of data.

Let us analyze the operation of the NBW for the data transfer across the interface

from the communication system to the host computer. At this interface, there is one

progress
of task T1

progress
of task T2

critical resource
(critical region of data)

time interval where a conflict can occur

non-critical sections of tasks T1 and T2

critical
section of
task T2

critical
section of

task T1

Fig. 9.3 Critical task sections and critical data regions
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writer, the communication system, and many readers, the tasks of the component.

A reader does not destroy the information written by a writer, but a writer can

interfere with the operation of the reader. In the NBW protocol, the real-time writer

is never blocked. It will thus write a new version of the message into the critical data

region whenever a new message arrives. If a reader reads the message while the

writer is writing a new version, the retrieved message will contain inconsistent

information and must be discarded. If the reader is able to detect the interference,

then the reader can retry the read operation until it retrieves a consistent version of

the data. It must be shown that the number of retries performed by the reader is

bounded.

The protocol requires a concurrency control field, CCF, for every critical data

region. Atomic access to the CCF must be guaranteed by the hardware. The

concurrency control field is initialized to zero and incremented by the writer before

the start of the write operation. It is again incremented by the writer after the

completion of the write operation. The reader starts by reading the CCF at the start

of the read operation. If the CCF is odd, then the reader retries immediately because

a write operation is in progress. At the end of the read operation, the reader checks

whether the writer has changed the CCF during the read operation. If so, it retries

the read operation again until it can read an uncorrupted version of the data

structure (see Fig. 9.4).

It can be shown that an upper bound for the number of read retries exists if the

time between write operations is significantly longer than the duration of a write or

read operation. The worst-case extension of the execution time of a typical real-

time task caused by the retries of the reader is only a few percent of the original

worst-case execution time (WCET) of the task [Kop93a].

Non-locking synchronization has been implemented in other real-time systems,

e.g., in a multimedia system [And95]. It has been shown that systems with non-

locking synchronization achieve better performance than systems that lock the data.

9.4.3 Semaphore Operations

The classic mechanism to avoid data inconsistency is to enforce mutual exclusive

execution of the critical task sections by aWAIT operation on a semaphore variable

initialization: CCF := 0;
writer: reader:
start: start: CCF_begin := CCF;CCF_old := CCF;

CCF := CCF_old + 1;
<write to data structure>
CCF := CCF_old + 2;

if CCF_begin = odd
then goto start;
<read data structure>
CCF_end := CCF;
if CCF_end ¹ CCF_begin
then goto start;

Fig. 9.4 The non-blocking write (NBW) protocol
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that protects the resource. Whenever one task is in its critical section, the other task

must wait in a queue until the critical section is freed (explicit synchronization).
The implementation of a semaphore-initialize operation is expensive, both

regarding memory requirements and operating system processing overhead. If a

process runs into a blocked semaphore, a context switch must be made. The process

is put into a queue and is delayed until the other process finishes its critical section.

Then, the process is dequeued and another context switch is made to reestablish the

original context. If the critical region is very small (this is the case in many real-

time applications), the processing time for the semaphore operations can take

significantly longer than the actual reading or writing of the common data.

Both the NBW protocol and semaphore operation can lead to a loss of replica

determinism. The simultaneous access to CCF or a semaphore variable leads to a

race condition that is resolved in an unpredictable manner in the replicas.

9.5 Process Input/Output

A transducer is a device that forms the interface between the plant (the physical

world) and the computer (the cyber world). On the input side, a sensor transforms a

mechanical or electrical quantity to a digital form, whereby the discreteness of the

digital representation leads to an unavoidable error if the domain of the physical

quantity is dense. The last bit of any digital representation of an analog quantity

(both in the domain of value and time) is non-predictable, leading to potential

inconsistencies in the cyber world representation if the same quantity is observed by

two independent sensors. On the output side, a digital value is transformed to an

appropriate physical signal by an actuator.

9.5.1 Analog Input/Output

In a first step, many sensors of analog physical quantities produce analog signals in

the standard 4–20 mA range (4 mA meaning 0% of the value range and 20 mA

meaning 100% of the value range) that is then transformed to its digital form by an

analog-to-digital (AD) converter. If a measured value is encoded in the 4–20 mA

range, it is possible to distinguish a broken wire, where no current flows (0 mA),

from a measured value of 0% (4 mA).

Without special care, the electric-noise level limits the accuracy of any analog

control signal to about 0.1%. Analog-to-digital (AD) converters with a resolution of

more than 10 bits require a carefully controlled physical environment that is not

available in typical industrial applications. A 16-bit word length is thus more than

sufficient to encode the value of an RT entity measured by an analog sensor.

The time interval between the occurrence of a value in the RT entity and the

presentation of this value by the sensor at the sensor/computer interface is
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determined by the transfer function of the particular sensor. The step response of a

sensor (see Fig. 1.4), denoting the lag time and the rise time of the sensor, gives an
approximation of this transfer function. When reasoning about the temporal accuracy

of a sensor/actuator signal, the parameters of the transfer functions of the sensors and

the actuators must be considered (Fig. 9.5). They reduce the available time interval

between the occurrence of a value at the RT entity and the use of this value for an

output action by the computer. Transducers with short lag times increase the length of
the temporal accuracy interval that is available to the computer system.

In many control applications, the instant when an analog physical quantity is

observed (sampled) is in the sphere of control of the computer system. In order to

reduce the dead time of a control loop, the instant of sampling, the transmission of

the sampled data to the control node and the transmission of the set-point data to the

actuator node should be phase-aligned (see Sect. 3.3.4).

9.5.2 Digital Input/Output

A digital I/O signal transits between the two states TRUE and FALSE. In many

applications, the length of the time interval between two state changes is of

semantic significance. In other applications, the moment when the transition occurs

is important.

If the input signal originates from a simple mechanical switch, the new stable

state is not reached immediately but only after a number of random oscillations

(Fig. 9.6), called the contact bounce, caused by the mechanical vibrations of the

switch contacts. This contact bounce must be eliminated either by an analog low-

pass filter or, more often, within the computer system by software tasks, e.g.,

debouncing routines. Due to the low price of a microcontroller, it is cheaper to

debounce a signal by software techniques than by hardware mechanisms (e.g., a low

pass filter).

A number of sensor devices generate a sequence of pulse inputs, where each pulse

carries information about the occurrence of an event. For example, distance measure-

ments are oftenmade by awheel rolling along the object thatmust bemeasured. Every

rotation of the wheel generates a defined number of pulses that can be converted to

the distance traveled. The frequency of the pulses is an indication of the speed. If the

wheel travels past a defined calibration point, an additional digital input is signaled

value at RT entity
in controlled object

time delay 
at sensor

real-time
time delay 
at actuator

input output

value at RT entity
in controlled object

delay within
computer system

computer interface

Fig. 9.5 Time delay of a complete I/O transaction
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to the computer to set the pulse counter to a defined value. It is good practice to

convert the relative event values to absolute state values as soon as possible.

Time Encoded Signals. Many output devices, e.g., power semiconductors such as

IGBTs (insulated-gate-bipolar transistors), are controlled by pulse sequences of

well-specified shape (pulse width modulation – PWM). A number of microcon-

trollers designed for I/O provide special hardware support for generating these

digital pulse shapes.

9.5.3 Interrupts

The interrupt mechanism empowers a device outside the sphere of control of the

computer to govern the temporal control pattern inside the computer. This is a

powerful and potentially dangerous mechanism that must be used with great care.

Interrupts are needed when an external event requires a reaction time from the

computer (time as control) that cannot be implemented efficiently with a trigger task.

A trigger task extends the response time of an RT transaction that is initiated by

an external event by at most one period of the trigger task. Increasing the trigger-

task frequency can reduce this additional delay at the expense of an increased

overhead. [Pol95b] has analyzed this increase in the overhead for the periodic

execution of a trigger task as the required response time approaches the WCET

of the trigger task. As a rule of thumb, only if the required response time is less than

ten times the WCET of the trigger task, the implementation of an interrupt should

be considered.

If information about the precise instant of arrival of a message is required, but no

immediate action has to be taken, an interrupt-controlled time-stamping mechanism

implemented in hardware should be used. Such a mechanism works autonomously

and does not interfere with the control structure of tasks at the operating system level.

Example: In the hardware implementation of the IEEE 1,588 clock synchronization

protocol, a hardware mechanism autonomously generates the time-stamp of an arriving

synchronization message [Eid06].

In an interrupt-driven software system, a transient error on the interrupt line may

upset the temporal control pattern of the complete node and may cause the violation

of important deadlines. Therefore, the time interval between the occurrence of any

two interrupts must be continuously monitored, and compared to the specified

minimum duration between interrupting events.

contact
bounce

timeswitch open switch closed

Fig. 9.6 Contact bounce of a

mechanical switch
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Monitoring the occurrence of an interrupt. There are three tasks in the computer

associated with every monitored interrupt [Pol95b] (Fig. 9.7). The first and second

one are dynamically planned TT tasks that determine the interrupt window. The

first one enables the interrupt line and thus opens the time window during which an

interrupt is allowed to occur. The third task is the interrupt service task that is

activated by the interrupt. Whenever the interrupt has occurred, the interrupt service

task closes the time window by disabling the interrupt line. It then deactivates the

scheduled future activation of the second task. In case the third task was not

activated before the start of the second task, the second task, a dynamic TT task

scheduled at the end of the time window, closes the time window by disabling the

interrupt line. The second task then generates an error flag to inform the application

of the missing interrupt.

The two time-triggered tasks are needed for error detection. The first task detects

a sporadic interrupt that should not have occurred. The second task detects a

missing interrupt that should have occurred. These different errors require different

types of error handling. The more we know about the regularity of the controlled

object, the smaller we can make the time window in which an interrupt may occur.

This leads to better error-detection coverage.

Example: An engine controller of an automotive engine has such a stringent requirement

regarding the point of fuel injection relative to the position of the piston in the cylinder that

the implementation must use an interrupt for measuring the position [Pol95b]. The position

of the piston and the rotational speed of the crankshaft are measured by a number of sensors

that generate rising edges whenever a defined section of the crankshaft passes the position

of the sensor. Since the speed and the maximum angular acceleration (or deceleration) of

the engine is known, the next correct interrupt must arrive within a small dynamically

defined time window from the previous interrupt. The interrupt logic is only enabled during

this short window and disabled at all other times to reduce the impact of sporadic interrupts

on the temporal control pattern within the host software. Such a sporadic interrupt, if not

detected, may cause a mechanical damage to the engine.

9.5.4 Fault-Tolerant Actuators

An actuator must transform the signal generated at the output interface of

the computer into some physical action in the controlled object (e.g., opening of

a valve). The actuators form the last element in the chain between sensing the

values of an RT-entity and realizing the intended effect in the environment. In a

interrupt may occur in this
time window; the third task,
the ET interrupt service task,
is activated and closes
the time window

time window is closed
by the second dynamic
TT task if no interrupt
has occured

time window is opened
by the first dynamic TT 

task if no interrupt has
occured

time

Fig. 9.7 Time window of an interrupt
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fault-tolerant system, the actuators must perform the final voting on the output

signals received on the replicated channels. Figure 9.8 shows an example where the

intended action in the environment is the positioning of a mechanical lever. At the

end of the lever there may be any mechanical device that acts on the controlled

object, e.g., there may be a piston of a control valve mounted at the point of action.

In a replica-determinate architecture, the correct replicated channels produce

identical results in the value and in the time domains. We differentiate between

the cases where the architecture supports the fail-silent property (Fig. 9.8a), i.e., all

failed channels are silent, and where the fail-silence property is not supported

(Fig. 9.8b), i.e., a failed channel can show an arbitrary behavior in the value domain.

Fail-Silent Actuator. In a fail-silent architecture, all subsystems must support the

fail-silence property. A fail-silent actuator will either produce the intended (correct)

output action or no result at all. In case a fail-silent actuator fails to produce an

output action, it may not hinder the activity of the replicated fail-silent actuator. The

fail-silent actuator of Fig. 9.8a consists of two motors where each one has enough

power to move the point of action. Each motor is connected to one of the two

replica-determinate output channels of the computer system. If one motor fails at

any location, the other motor is still capable to move the point of action to the

desired position.

Triple Modular Redundant Actuator. The triple modular redundant (TMR) actua-

tor (Fig. 9.8b) consists of three motors, each one connected to one of the three

replica-determinate output channels of the fault-tolerant computer. The force of any

two motors must be strong enough to override the force of the third motor, however,

any single motor may not be strong enough to override the other two. The TMR

actuator can be viewed as a mechanical voter that will place the point of action into
a position that is determined by the majority of the three channels, outvoting the

disagreeing channel.

Actuator with a Dedicated Stateless Voter. In many applications where redundant

actuators are already in place, a voting actuator can be constructed by combining

the physical actuator with a small microcontroller that accepts the three input

channels from the three lanes of a TMR system and votes on the messages received

from the three lanes. This voter can be stateless, i.e., after every cycle the circuitry

of the voter is reset in order to eliminate the accumulation of state errors caused by

transient faults (Fig. 9.9).
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Example: In a car, a stateless voter can be placed at the brake actuator at each one of the

four wheels. The voter will mask the failure in any one of the TMR channels. A stateless

voter is an example for an intelligent instrumentation.

9.5.5 Intelligent Instrumentation

There is an increasing tendency to encapsulate a sensor/actuator and the associated

microcontroller into a single physical housing to provide a standard abstract

message interface to the outside world that produces measured values at a field

bus, e.g., a CAN bus (Fig. 9.10). Such a unit is called an intelligent instrument.
The intelligent instrument hides the concrete sensor interface. Its single chip

microcontroller provides the required control signals to the sensor/actuator, per-

forms signal conditioning, signal smoothing and local error detection, and presents/

takes a meaningful RT image in standard measuring units to/from the field bus

message interface. Intelligent instruments simplify the connection of the plant

equipment to the computer.

Example: A MEMS acceleration sensor, micro machined into silicon, mounted with the

appropriate microcontroller and network interface into a single package, forms an intelli-

gent sensor.

To make the measured value fault-tolerant, a number of independent sensors can be

packed into a single intelligent instrument. Inside the intelligent instrument, an

agreement protocol is executed to arrive at an agreed sensor value, even if one of

the sensors has failed. This approach assumes that independent measurements can

be taken in close spatial vicinity.

The integration of a field bus node with an actuator produces an intelligent

actuator device.

Example: An actuator of an airbag in an automobile must ignite an explosive charge to

release the gas of a high-pressure container into the airbag at the appropriate moment.

A small explosive charge, placed directly on the silicon of a microcontroller, can be ignited

on-chip. The package is mounted at the proper mechanical position to open the critical

valve. The microcontroller including the explosive charge forms an intelligent actuator.

Because many different field bus designs are available today, and no generally

accepted industry wide field bus standard has emerged, the sensor manufacturer

must cope with the dilemma to provide a different intelligent instrument network

interface for different field buses.
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9.5.6 Physical Installation

It is beyond the scope of this book to cover all the issues that must be considered in

the physical installation of a sensor-based real-time control system. These complex

topics are covered in books on computer hardware installation. However, a few

critical issues are highlighted.

Power Supply. Many computer failures are caused by power failures, i.e., long

power outages, short power outages of less than a second also called sags, and power

surges (short overvoltage). The provision of a reliable and clean power source is thus

of crucial importance for the proper operation of any computer system.

Grounding. The design of a proper grounding system in an industrial plant is a

major task that requires considerable experience. Many transient computer hard-

ware failures are caused by deficient grounding systems. It is important to connect

all units in a tree-like manner to a high quality true ground point. Loops in the

ground circuitry must be avoided because they pick up electromagnetic distur-

bances.

Electric Isolation. In many applications, complete electric isolation of the computer

terminals from the signals in the plant is needed. Such isolation can be achieved by

opto couplers for digital signals or signal transformers for analog signals.

9.6 Agreement ProtocolS

Sensors and actuators have failure rates that are considerably higher than those of

single-chip microcomputers. No critical output action should rely on the input from

a single sensor. It is necessary to observe the controlled object by a number of

different sensors and to relate these observations to detect erroneous sensor values,

to observe the effects of actuators, and to get an agreed image of the physical state

of the controlled object. In a distributed system agreement (also called consensus in
[Bar93]) always requires an information exchange among the agreeing partners.

The number of rounds of such an information exchange needed depends on the type

of agreement and the assumptions about the possible failure modes of the partners.
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Fig. 9.10 Intelligent instrumentation
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9.6.1 Raw Data, Measured Data, and Agreed Data

In Sect. 1.2.1, the concepts of raw data, measured data, and agreed data have been

introduced: raw data are produced at the digital hardware interface of the physical

sensor. Measured data, presented in standard engineering units, are derived from

one or a sequence of raw data samples by the process of signal conditioning.
Measured data that are judged to be a correct image of the RT entity, e.g., after

the comparison with other measured data elements that have been derived by

diverse techniques, are called agreed data. Agreed data form the inputs to control

actions. In a safety critical system where no single point of failure is allowed to

exist, an agreed data element may not originate from a single sensor. The challenge
in the development of a safety critical input system is the selection and placement of

the redundant sensors and the design of the agreement algorithms. We distinguish

two types of agreement, syntactic agreement and semantic agreement.

9.6.2 Syntactic Agreement

Assume that a two independent sensors measure a single RT entity. When the two

observations are transformed from the domain of analog values to the domain of

discrete values, a slight difference between the two raw values caused by a

measurement error and digitalization error is unavoidable. These different raw

data values will cause different measured values. A digitalization error also occurs

in the time domain when the time of occurrence of an event in the controlled object

is mapped into the discrete time of the computer. Even in the fault-free case, these

different measured values must be reconciled in some way to present an agreed

view of the RT entity to the possibly replicated control tasks. In syntactic agree-

ment, the agreement algorithm computes the agreed value without considering the

context of the measured values. For example, the agreement algorithm always takes

the average of a set of measured data values. If a Byzantine failure of one of the

sensors must be tolerated, three additional sensors are needed (see Sect. 6.4.2).

9.6.3 Semantic Agreement

If the meanings of the different measured values are related to each other by a

process model based on a priori knowledge about the relationships and the

physical characteristics of the process parameters of the controlled object, we

speak of semantic agreement. In semantic agreement, it is not necessary

to duplicate or triplicate every sensor. Different redundant sensors observe differ-

ent RT-entities. A model of the physical process relates these redundant sensor

readings to each other to find a set of plausible agreed values and to identify
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implausible values that indicate a sensor failure. Such an erroneous sensor value

must be replaced by a calculated estimate of the most probable value at the

given point in time, based on the inherent semantic redundancy in the set of

measurements.

Example: A number of laws of nature govern a chemical process: the conservation of

mass, the conservation of energy, and some known maximum speed of the chemical

reaction. These fundamental laws of nature can be applied to check the plausibility of the

measured data set. In case one sensor reading deviates significantly from all other sensors, a

sensor failure is assumed and the failed value is replaced by an estimate of the correct value

at this instant, to be able to proceed with the control of the chemical process.

Semantic agreement requires a fundamental understanding of the applied process

technology. It is common that an interdisciplinary team composed of process

technologists, measurement specialists, and computer engineers cooperates to find

the RT entities that can be measured with good precision at reasonable cost.

Typically, for every output value, about three to seven input values must be

observed, not only to be able to diagnose erroneous measured data elements, but

also to check the proper operation of the actuators. Independent sensors that

observe the intended effect of the actuator (see Sect. 6.1.4) must monitor the proper

operation of every actuator.

In engineering practice, semantic agreement of measured data values is more

important than syntactic agreement. As a result of the agreement phase, an agreed

(and consistent) set of digital input values is produced. These agreed values, defined

in the value domain and in the time domain, are then used by all (replicated) tasks to

achieve a replica-determinate behavior of the control system.

9.7 Error Detection

A real-time operating system must support error detection in the temporal domain

and error detection in the value domain by generic methods. Some of these generic

methods are described in this section.

9.7.1 Monitoring Task Execution Times

A tight upper bound on the worst-case execution time (WCET) of a real-time task

must be established during software development (see Sect. 10.2). This WCET

must be monitored by the operating system at run time to detect transient or

permanent hardware errors. In case a task does not terminate its operation within

the WCET, the execution of the task is terminated by the operating system. It is up

to the application to specify which action should be taken in case of an error.
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9.7.2 Monitoring Interrupts

An erroneous external interrupt has the potential to disrupt the temporal control

structure of the real-time software within the node. At design time, the minimum

inter-arrival periods of interrupts must be known to be able to estimate the peak load

that must be handled by the software system. At run time, this minimum inter-arrival

period must be enforced by the operating system by disabling the interrupt line to

reduce the probability of erroneous sporadic interrupts (see Sect. 9.5.3).

9.7.3 Double Execution of Tasks

Fault-injection experiments have shown that the double execution of tasks and the

subsequent comparison of the results is a very effective method for the detection of

transient hardware faults that cause undetected errors in the value domain [Arl03].

The operating system can provide the execution environment for the double execu-

tion of application tasks without demanding any changes to the application task per

se. It is thus possible to decide at the time of system configuration which tasks should

be executed twice and for which tasks it is sufficient to rely on a single execution.

9.7.4 Watchdogs

A fail-silent node will produce correct results or no results at all. The failure of a fail-

silent node can only be detected in the temporal domain. A standard technique is the

provision of a watchdog signal (heart-beat) that must be periodically produced by the

operating system of the node. If the node has access to the global time, the watchdog

signal should be produced periodically at known absolute points in time. An outside

observer can detect the failure of the node as soon as the watchdog signal disappears.

A more sophisticated error detection mechanism that also covers part of the value

domain is the periodic execution of a challenge-response protocol by a node.An outside
error detector provides an input pattern to thenode andexpects a defined responsepattern

within a specified time interval.The calculationof this responsepattern should involve as

many functional units of the node as possible. If the calculated response pattern deviates

from the a priori known correct result, an error of the node is detected.

Points to Remember

l We distinguish two levels of system administration in a component-based

distributed real-time system: (1) the coordination of the message-based communi-

cation and resource allocation among the components, and (2) the establishment,
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coordination of, and control of the concurrent tasks within each one of the

components.
l Since the component software is assumed to be a unit of design, and a whole

component is the smallest unit of fault-containment, the concurrent tasks within

a component are cooperative and not competitive.
l In an entirely time-triggered system, the static temporal control structure of all tasks

is established a priori by off-line scheduling tools. This temporal control structure is

encoded in a Task-Descriptor List (TADL) that contains the cyclic schedule for all
activities of the node. This schedule considers the required precedence and mutual

exclusion relationships among the tasks such that an explicit coordination of the

tasks by the operating system at run time is not necessary.
l In a RT operating system that supports task preemption, each occurrence of a

significant event can potentially activate a new task and cause an immediate

interruption of the currently executing task. If components are replicated, care

must be taken that the preemption points at all replicas is at the same statement,
otherwise replica determinism may be lost.

l The timing analysis of a C-task is not a local issue of a single task anymore; it

becomes a global system issue. In the general case it is impossible to give an

upper bound for the WCET of a C-task.
l It is important to distinguish time as data and time as control. Time as control is

more difficult to handle than time as data, because it may sometimes require a

dynamic data-dependent modification of the temporal control structure.
l Care must be taken that the integrity of data that is read or written concurrently

by more than one task is maintained. In a time-triggered system, the task

schedules can be constructed in such a way that critical sections of tasks do

not overlap.
l In order to reduce the dead time of a control loop, the instant of sampling, the

transmissionof the sampled data to the control node, and the transmission of the set-

point data to the actuator node should be phase-aligned in a time-triggered system.
l In an interrupt driven software system, a transient error on the interrupt line may

upset the temporal control pattern of the complete node and may cause the

violation of important deadlines.
l A voting actuator may be constructed by assigning a small microcontroller to the

physical actuator that accepts the three input channels of the three lanes of a

TMR system and votes on the messages received from the three lanes.
l Typically, for every output value, about three to seven input values must be

observed, not only to be able to diagnose erroneous measured data elements, but

also to check the proper operation of the actuators.

Bibliographic Notes

Many of the standard textbooks on operating systems contain sections on real-

time operating systems, e.g., the textbook by Stallings [Sta08]. The most recent

236 9 Real-Time Operating Systems

Obermaisser
Hervorheben

Obermaisser
Hervorheben

Obermaisser
Hervorheben

Obermaisser
Textfeld
implicit synchronization



research contributions on real-time operating systems can be found in the annual

Proceedings of the IEEE Real-Time System Symposium and the Journal Real-Time
Systems from Springer Verlag.

Review Questions and Problems

9.1 Explain the difference between a standard operating system for a personal

computer and an RT operating system within the node of a safety-critical real-

time application!

9.2 What is meant by a simple task, a trigger task, and a complex task?
9.3 What is the difference between time as data and time as control?
9.4 Why is the classical mechanism of semaphore operations sub-optimal for the

protection of critical data in a real-time OS? What alternatives are available?

9.5 How is contact-bounce eliminated?

9.6 When do we need interrupts? What is the effect of spurious interrupts? How

can we protect the software from spurious interrupts?

9.7 A node of an alarm monitoring system must monitor 50 alarms. The alarms

must be reported to the rest of the cluster within 10 ms by a 100 kbit/s CAN

bus. Sketch an implementation that uses periodic CAN messages (time-

triggered with a cycle of 10 ms) and an implementation that uses sporadic

event-triggered messages, one for every occurring alarm. Compare the imple-

mentations from these points of view: generated load under the conditions of

no alarm and all alarms occurring simultaneously, guaranteed response time,

and detection of a crash failure of the alarm node.

9.8 Let us assume that an actuator has a failure rate of 106 FITs. If we construct a

voting actuator by adding a microcontroller with a failure rate of 104 FITs to

this actuator, what is the resultant failure rate of the voting actuator?

9.9 What is the difference between raw data, measured data, and agreed data?
9.10 What is the difference between syntactic agreement and semantic agreement?

Which technique is more important in the design of real-time applications?

9.11 List some of the generic error-detection techniques that should be supported

by a real-time OS!

9.12 Which types of failures can be detected by the double execution of tasks?
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Chapter 10

Real-Time Scheduling

Overview Many thousands of research papers have been written about how to

schedule a set of tasks in a system with a limited amount of resources such that all

tasks will meet their deadlines. This chapter tries to summarize some important

results of scheduling research that are relevant to the designer of real-time systems.

The chapter starts by introducing the notion of a schedulability test to determine

whether a given task set is schedulable or not. It distinguishes between a sufficient,

an exact, and a necessary schedulability test. A scheduling algorithm is optimal if it
will find a schedule whenever there is a solution. The adversary argument shows

that generally it is not possible to design an optimal on-line scheduling algorithm. A

prerequisite for the application of any scheduling technique is knowledge about the

worst-case execution time (WCET) of all time-critical tasks. Section 10.2 presents

techniques to estimate the WCET of simple tasks and complex tasks. Modern

processors with pipelines and caches make it difficult to arrive at tight bounds for

the WCET. Anytime algorithms that contain a root segment that provides a result of

sufficient (but low) quality and an optional periodic segment that improves on the

quality of the previous result point to a way out of this dilemma. They use the

interval between the actual execution time of the root segment of a concrete task

execution and the deadline, i.e., the worst execution time of the root segment, to

improve the quality of the result. Section 10.3 covers the topic of static scheduling.

The concept of the schedule period is introduced and an example of a simple search

tree that covers a schedule period is given. A heuristic algorithm has to examine the

search tree to find a feasible schedule. If it finds one, the solution can be considered

a constructive schedulability test. Section 10.4 elaborates on dynamic scheduling. It

starts by looking at the problem of scheduling a set of independent tasks by the rate-

monotonic algorithm. Next, the problem of scheduling a set of dependent tasks is

investigated. The priority-ceiling protocol is introduced and a schedulability test for

the priority ceiling protocol is sketched. Finally, the scheduling problem in

distributed systems is touched and some ideas about alternative scheduling strate-

gies such as feedback scheduling are given.

H. Kopetz, Real-Time Systems: Design Principles for Distributed Embedded Applications,
Real-Time Systems Series, DOI 10.1007/978-1-4419-8237-7_10,
# Springer Science+Business Media, LLC 2011
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10.1 The Scheduling Problem

A hard real-time system must execute a set of concurrent real-time tasks in such a

way that all time-critical tasks meet their specified deadlines. Every task needs

computational, data, and other resources (e.g. input/output devices) to proceed. The

scheduling problem is concerned with the allocation of these resources to satisfy all

timing requirements.

10.1.1 Classification of Scheduling Algorithms

The following diagram (Fig. 10.1) presents a taxonomy of real-time scheduling

algorithms [Che87].

Static Versus Dynamic Scheduling. A scheduler is called static (or pre-run-time) if

it makes its scheduling decisions at compile time. It generates a dispatching table

for the run-time dispatcher off-line. For this purpose it needs complete prior

knowledge about the task-set characteristics, e.g., maximum execution times,

precedence constraints, mutual exclusion constraints, and deadlines. The dispatch-

ing table (see Fig. 9.2) contains all information the dispatcher needs at run time to

decide at every point of the sparse time-base which task is to be scheduled next. The

run-time overhead of the dispatcher is small. The system behavior is deterministic.

A scheduler is called dynamic (or on-line) if it makes its scheduling decisions at

run time, selecting one out of the current set of ready tasks. Dynamic schedulers are

flexible and adapt to an evolving task scenario. They consider only the current task
requests. The run-time effort involved in finding a schedule can be substantial. In

general, the system behavior is non-deterministic.

Non-preemptive and Preemptive Scheduling. In non-preemptive scheduling, the

currently executing task will not be interrupted until it decides on its own to release

the allocated resources. Non-preemptive scheduling is reasonable in a task scenario

where many short tasks (compared to the time it takes for a context switch) must be

executed. In preemptive scheduling, the currently executing taskmay be preempted, i.

e., interrupted, if a more urgent task requests service.

Centralized Versus Distributed Scheduling. In a dynamic distributed real-time

system, it is possible to make all scheduling decisions at one central site or to

real-time scheduling

hard

soft

static

dynamic

non-preemptive

preemptive

non-preemptive

preemptive

Fig. 10.1 Taxonomy of real-time scheduling algorithms
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develop cooperative distributed algorithms for the solution of the scheduling

problem. The central scheduler in a distributed system is a critical point of failure.

Because it requires up-to-date information on the load situations of all nodes, it can

also contribute to a communication bottleneck.

10.1.2 Schedulability Test

A test that determines whether a set of ready tasks can be scheduled such that each

task meets its deadline is called a schedulability test. We distinguish between exact,
necessary, and sufficient schedulability tests (Fig. 10.2).

A scheduler is called optimal if it will always find a feasible schedule whenever

it exists. Alternatively, a scheduler is called optimal, if it can find a schedule

whenever a clairvoyant scheduler, i.e., a scheduler with complete knowledge of

the future request times, can find a schedule. Garey and Johnson [Gar75] have

shown that in nearly all cases of task dependency, even if there is only one common

resource, the complexity of an exact schedulability test algorithm belongs to the

class of NP-complete problems and is thus computationally intractable. Sufficient
schedulability test algorithms can be simpler at the expense of giving a negative

result for some task sets that are, in fact, schedulable. A task set is definitely not

schedulable if a necessary schedulability test gives a negative result. If a necessary
schedulability test gives a positive result, there is still a probability that the task set

may not be schedulable. The task request time is the instant when a request for a

task execution is made. Based on the request times, it is useful to distinguish

between two different task types: periodic and sporadic tasks. This distinction is

important from the point of view of schedulability.

If we start with an initial request, all future request times of a periodic task

are known a priori by adding multiples of the known period to the initial request

time. Let us assume that there is a task set {Ti} of periodic tasks with periods pi,
deadline interval di, and execution time ci. The deadline interval is the duration

between the deadline of a task and the task request instant, i.e., the instant when a

task becomes ready for execution. We call the difference di � ci the laxity li of a
task. It is sufficient to examine schedules of length of the least common multiples

of the periods of these tasks, the schedule period, to determine schedulability.

increasing task set complexity

if the sufficient schedulability
test is positive, these tasks are

definitely schedulable

if the necessary schedulability
test is negative, these tasks are
definitely not schedulable

exact
schedulability test

sufficient
schedulability test

necessary
schedulability test

Fig. 10.2 Necessary and sufficient schedulability test
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A necessary schedulability test for a set of periodic tasks states that the sum of

the utilization factors

m ¼
X

ci=pibn,

must be less or equal to n, where n is the number of available processors. This is

evident because the utilization factor of task Ti, mi, denotes the percentage of time

task Ti requires service from a processor.

The request times of sporadic tasks are not known a priori. To be schedulable, there
must be a minimum interval between any two request times of sporadic tasks.

Otherwise, the necessary schedulability test introduced above will fail. If there is no

constraint on the request times of task activations, the task is called an aperiodic task.

10.1.3 The Adversary Argument

Let us assume that a real-time computer system contains a dynamic scheduler with

full knowledge of the past but without any knowledge about future request times of

tasks. Schedulability of the current task set may depend on when a sporadic task

will request service in the future.

The adversary argument [Mok93, p. 41] states that, in general, it is not possible

to construct an optimal totally on-line dynamic scheduler if there are mutual

exclusion constraints between a periodic and a sporadic task. The proof of the

adversary argument is relatively simple.

Consider two mutually exclusive tasks, task T1 is periodic and the other task T2
is sporadic, with the parameters given in Fig. 10.3. The necessary schedulability test

introduced above is satisfied, because

m ¼ 2=4þ 1=4 ¼ 3=4b1:

Whenever the periodic task is executing, an adversary requests service for the

sporadic task. Due to the mutual exclusion constraint, the sporadic task must wait

until the periodic task is finished. Since the sporadic task has a laxity of 0, it will

miss its deadline.

1

clairvoyant
scheduler shifts
task T1

2 3 4 5 6 7 8

T2

T2
T1

T1: c=2, d=4, p=4, periodic
T2: c=1, d=1, p=4, sporadic
T1 and T2 are mutually exclusive

T1T1

T2

conflictT2
T1

conflict

Fig. 10.3 The adversary argument
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The clairvoyant scheduler knows all the future request times of the sporadic

tasks and at first schedules the sporadic task and thereafter the periodic task in the

gap between two sporadic task activations (Fig. 10.3).

The adversary argument demonstrates the importance of information about the

future behavior of tasks for solving the scheduling problem. If the on-line scheduler

does not have any further knowledge about the request times of the sporadic task,

the dynamic scheduling problem is not solvable, although the processor capacity is

more than sufficient for the given task scenario. The design of predictable hard real-

time systems is simplified if regularity assumptions about the future scheduling

requests can be made. This is the case in cyclic systems that restrain the points in

time at which external requests are recognized by the computing system.

10.2 Worst-Case Execution Time

A deadline for completing an RT transaction can only be guaranteed if the worst-

case execution times (WCET) of all application tasks and communication actions

that are part of the RT-transaction are known a priori. The WCET of a task is a

guaranteed upper bound for the time between task activation and task termination.

It must be valid for all possible input data and execution scenarios of the task and

should be a tight bound.

In addition to the knowledge about the WCET of the application tasks, we must

find an upper bound for the delays caused by the administrative services of the

operating system, the worst-case administrative overhead (WCAO). The WCAO

includes all administrative delays that affect an application task but are not under

the direct control of the application task (e.g., those caused by context switches,

scheduling, cache reloading because of task preemption by interrupts or blocking,

and direct memory access).

This section starts with an analysis of the WCET of a non-preemptive simple

task. We then proceed to investigate the WCET of a preemptive simple task before

looking at the WCET of complex tasks and, finally, we discuss the state of the art

regarding the timing analysis of real-time programs.

10.2.1 WCET of Simple Tasks

The simplest task we can envision is a single sequential S-task that runs on

dedicated hardware without preemption and without requiring any operating system

services. The WCET of such a task depends on:

1. The source code of the task

2. The properties of the object code generated by the compiler

3. The characteristics of the target hardware
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In this section, we investigate the analytical construction of a tight worst-case

execution time bound of such a simple task on hardware, where the execution time

of an instruction is context independent.

Source Code Analysis. The first problem concerns the calculation of the WCET of a

program written in a higher-level language, under the assumption that the maximum

execution times of the basic language constructs are known and context independent.

In general, the problem of determining the WCET of an arbitrary sequential program

is unsolvable and is equivalent to the halting problem for Turing machines. Consider,

for example, the simple statement that controls the entry to a loop:

S: whileðexpÞ
do loop;

It is not possible to determine a priori after how many iterations, if at all, the

Boolean expression exp will evaluate to the value FALSE and when statement S

will terminate. For the determination of the WCET to be a tractable problem there

are a number of constraints that must be met by a the program [Pus89]:

1. Absence of unbounded control statements at the beginning of a loop

2. Absence of recursive function calls

3. Absence of dynamic data structures

The WCET analysis concerns only the temporal properties of a program. The

temporal characteristics of a program can be abstracted into a WCET bound for

every program statement using the known WCET bound of the basic language

constructs. For example, the WCET bound of a conditional statement

S: ifðexpÞ
then S1

else S2;

can be abstracted as

TðSÞ ¼ max ½TðexpÞ þ TðS1Þ; TðexpÞ þ TðS2Þ�

where T(S) is the maximum execution time of statement S, with T(exp), T(S1), and
T(S2) being the WCET bounds of the respective constructs. Such a formula for

reasoning about the timing behavior of a program is called a timing schema [Sha89].
The WCET analysis of a program which is written in a high-level language must

determine which program path, i.e., which sequence of instructions, will be executed

in the worst-case scenario. The longest program path is called the critical path.
Because the number of program paths normally grows exponentially with the program

size, the search for the critical path can become intractable if the search is not properly

guided and the search space is not reduced by excluding infeasible paths.

Compiler Analysis. The next problem concerns the determination of the maximum

execution time of the basic language constructs of the source language under the

assumption that the maximum execution times of the machine language commands
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are known and context independent. For this purpose, the code generation strategy of

the compiler must be analyzed, and the timing information that is available at the

source code level must be mapped into the object code representation of the program

such that an object-code timing analysis tool can make use of this information.

Execution Time Analysis. The next problem concerns the determination of the

worst-case execution time of the commands on the target hardware. If the processor

of the target hardware has fixed instruction execution times, the duration of the

hardware instructions can be found in the hardware documentation and can be

retrieved by an elementary table look-up. Such a simple approach does not work if

the target hardware is a modern RISC processor with pipelined execution units and

instruction/data caches. While these architectural features result in significant

performance improvements, they also introduce a high level of unpredictability.

Dependencies among instructions can cause pipeline hazards, and cache misses will

lead to a significant delay of the instruction execution. To make things worse, these

two effects are not independent. A significant amount of research deals with the

execution time analysis on machines with pipelines and caches. The excellent

survey article by Wilhelm et al. [Wil08] presents the state of the art of WCET

analysis in research and industry and describes many of the tools available for the

support of WCET analysis.

Preemptive S-Tasks. If a simple task (S task) is preempted by another independent

task, e.g., a higher priority task that must service a pending interrupt, the execution

time of the S-task under consideration is extended by three terms:

1. The WCET of the interrupting task (task B in Fig. 10.4)

2. The WCET of the operating system required for context switching

3. The time required for reloading the instruction cache and the data cache of the

processor whenever the context of the processor is switched

We call the sum of the worst-case delays caused by the context switch (2), and

the cache reloading (3) the Worst-Case Administrative Overhead (WCAO) of a task

preemption. The WCAO is an unproductive administrative operating system over-

head that is avoided if task preemption is forbidden.

The additional delay caused by the preemption of task A by task B is the WCET

of the independent task B and the sum of the two WCAOs for the two context

switches (shaded area in Fig. 10.4). The times spent in Microarchitecture-1 and

Microarchitecture-2 are the delays caused by cache reloading. The Microarchitec-

ture-2 time of the first context switch is part of the WCET of task B, because task B

time

WCAO

task B
microarchitecture-2

operating system
microarchitecture-1

task A
WCAO

first
context switch

second
context switch

Fig. 10.4 Worst-case

administrative overhead

(WCAO) of a task preemption
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is assumed to start on an empty cache. The second context switch includes the cache

reload time of task A, because in a non-preemptive system, this delay would not

occur. In many applications with modern processors, the micro-architecture delays

can be the significant terms that determine the cost of task preemption because the

WCET of the interrupting task is normally quite short. The problem of WCAO

analysis in operating systems is studied in [Lv09].

10.2.2 WCET of Complex Tasks

We now turn to the WCET analysis of a preemptive complex task (C-task) that

accesses protected shared objects. The WCET of such a task depends not only on

behavior of the task itself, but also on the behavior of other tasks and the operating

system of the node. WCET analysis of a C-task is therefore not a local problem of a

single task, but a global problem involving all the interacting tasks within a node.

In addition to the delays caused by the task preemption (which was analyzed in

the previous section), an additional delay that originates from the direct interactions

caused by the intended task dependencies (mutual exclusion, precedence) must be

considered. In the last few years, progress has been made in coping with the direct

interactions caused by the intended task dependencies – e.g., access to protected

shared objects controlled by the priority ceiling protocol [Sha94]. This topic will be

investigated in Sect. 10.4.2 on the scheduling of dependent tasks.

10.2.3 Anytime Algorithms

In practice, the time difference between the best-case execution time (BCET) and a

guaranteed upper bound for the worst-case execution time (WCET) of a task can be

substantial. Anytime algorithms are algorithms that use this time difference to

improve the quality of the result as more execution time is provided [Chu08].

Anytime algorithms consist of a root segment that calculates a first approximation

of the result of sufficient quality and a periodic segment that improves the quality of

the previously calculated result. The periodic segment is executed repeatedly until

the deadline, i.e. the guaranteed worst-case execution time of the root segment, is

reached. Whenever the deadline occurs, the last version of the available result is

delivered to the client. When scheduling an anytime algorithm, the completion of

the root segment of the anytime algorithm must be guaranteed in order that a result

of sufficient quality is available at this instant. The remaining time until the

deadline is used to improve this result. The WCET problem of an anytime algo-

rithm is thus reduced to finding a guaranteed upper bound for the WCET of the root

segment. A loose upper bound of theWCET is of no serious concern, since the slack

time between BCET and WCET is used to improve the result.
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Most iterative algorithms are anytime algorithms. Anytime algorithms are used

in pattern recognition, planning, and control.

An anytime algorithm should have the following properties [Zil96]:

1. Measurable quality: It must be possible to measure the quality of a result.

2. Monotonic: The quality of the result must be a non-decreasing function of time

and should improve with every iteration.

3. Diminishing returns: The improvement of the result should get smaller as the

number of iterations increases.

4. Interruptability: After the completion of the root segment, the algorithm can be

interrupted at any time and deliver a reasonable result.

10.2.4 State of Practice

The previous discussion shows that the analytic calculation of a reasonable upper

WCET bound of an S-task which does not make use of operating system services is

possible under restricting assumptions. There are a number of tools that support

such an analysis [Wil08]. It requires an annotated source program that contains

programmer-supplied application-specific information to ensure that the program

terminates and a detailed model of the behavior of the hardware to achieve a

reasonable upper WCET bound.

Bounds for theWCET of all time-critical tasks are needed in almost all hard real-

time applications. This important problem is solved in practice by combining a

number of diverse techniques:

1. Use of a restricted architecture that reduces the interactions among the tasks and

facilitates the a priori analysis of the control structure. The number of explicit

synchronization actions that require context switches and operating system

services is minimized.

2. The design of WECT models and the analytic analysis of sub-problems (e.g., the

maximum execution time analysis of the source program) such that an effective

set of test cases biased towards the worst-case execution time can be generated

automatically.

3. The controlled measurement of sub-systems (tasks, operating system service

times) to gather experimental WCET data for the calibration of the WCET

models.

4. The implementation of an anytime algorithm, where only a bound for WCET of

the root segment must be provided.

5. The extensive testing of the complete implementation to validate the assump-

tions and to measure the safety margin between the assumed WCET and the

actual measured execution times.

The state of current practice is not satisfactory, because in many cases the

minimal and maximum execution times that are observed during testing are taken
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for the BCET and WCET. Such an observed upper bound cannot be considered a

guaranteed upper bound. It is to be hoped that in the future the WCET problem will

get easier, provided simple processors with private scratchpad memory will form

the components of multi-processor systems-on-chips (MPSoCs).

10.3 Static Scheduling

In static or pre-runtime scheduling, a feasible schedule of a set of tasks is calculated

off-line. The schedule must guarantee all deadlines, considering the resource,

precedence, and synchronization requirements of all tasks. The construction of

such a schedule can be considered as a constructive sufficient schedulability test.

The precedence relations between the tasks executing in the different nodes can be

depicted in the form of a precedence graph (Fig. 10.5).

10.3.1 Static Scheduling Viewed as a Search

Static scheduling is based on strong regularity assumptions about the points in time

when future service requests will be honored. Although the occurrence of external

events that demand service is not under the control of the computer system, the

recurring points in time when these events will be serviced can be established a

priori by selecting an appropriate sampling rate for each class of events. During

system design, it must be ascertained that the sum of the maximum delay times until

a request is recognized by the system plus the maximum transaction response time

is smaller than the specified service deadline.

The Role of Time. A static schedule is a periodic time-triggered schedule. The

timeline is partitioned into a sequence of basic granules, the basic cycle time. There
is only one interrupt in the system: the periodic clock interrupt denoting the start of

a new basic granule. In a distributed system, this clock interrupt must be globally
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synchronized to a precision that is much better than the duration of a basic granule.

Every transaction is periodic, its period being a multiple of the basic granule. The

least common multiple of all transaction periods is the schedule period. At compile

time, the scheduling decision for every point of the schedule period must be

determined and stored in a dispatcher table for the operating system for the full

schedule period. At run time, the preplanned decision is executed by the dispatcher

after every clock interrupt.

Example: If the periods of all tasks are harmonic, e.g., either a positive or negative power

of two of the full second, the schedule period is equal to the period of the task with the

longest period.

Static scheduling can be applied to a single processor, to a multiple-processor, or to

a distributed system. In addition to preplanning the resource usage in all nodes, the

access to the communication medium must also be preplanned in distributed

systems. It is known that finding an optimal schedule in a distributed system is in

almost all realistic scenarios an NP-complete problem, i.e., computationally intrac-

table. But even a non-optimal solution is sufficient if it meets all deadlines.

The Search Tree. The solution to the scheduling problem can be seen as finding a

path, a feasible schedule, in a search tree by applying a search strategy. An example

of a simple search tree for the precedence graph of Fig. 10.5 is shown in Fig. 10.6.

Every level of the search tree corresponds to one unit of time. The depth of the

search tree corresponds to the period of the schedule. The search starts with an

empty schedule at the root node of this tree. The outward edges of a node point to

the possible alternatives that exist at this point of the search. A path from the root

node to a particular node at level n records the sequence of scheduling decisions

that have been made up to time-point n. Each path to a leaf node describes a

complete schedule. It is the goal of the search to find a complete schedule that

observes all precedence and mutual exclusion constraints, and which completes

before the deadline. From Fig. 10.6, it can be seen that the right branch of the search

tree will lead to a shorter overall execution time than the left branches.

A Heuristic Function Guiding the Search. To improve the efficiency of the search,

it is necessary to guide the search by some heuristic function. Such a heuristic

function can be composed of two terms, the actual cost of the path encountered until

the present node in the search tree, i.e., the present point in the schedule, and the

estimated cost until a goal node. Fohler [Foh94] proposes a heuristic function that

estimates the time needed to complete the precedence graph, called TUR (time until
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response). A lower bound of the TUR can be derived by summing up the maximum

execution times of all tasks and message exchanges between the current task and

the last task in the precedence graph, assuming true parallelism constrained by the

competition for CPU resources of tasks that reside at the same node. If this

necessary TUR is not short enough to complete the precedence graph on time, all

the branches from the current node can be pruned and the search must backtrack.

10.3.2 Increasing the Flexibility in Static Schedules

One of the weaknesses of static scheduling is the assumption of strictly periodic tasks.

Although the majority of tasks in hard real-time applications is periodic, there are also

sporadic service requests that have hard deadline requirements. An example of such a

request is an emergency stop of a machine. Hopefully it will never be requested – the

mean time between emergency stops can be very long. However, if an emergency stop

is requested, it must be serviced within a small specified time interval.

The following three methods increase the flexibility of static scheduling:

1. The transformation of sporadic requests into periodic requests

2. The introduction of a sporadic server task

3. The execution of mode changes

Transformation of a Sporadic Request to a Periodic Request. While the future

request times of a periodic task are known a priori, only the minimum inter-arrival

time of a sporadic task is known in advance. The actual points in time when a

sporadic task must be serviced are not known ahead of the request event. This

limited information makes it difficult to schedule a sporadic request before run

time. The most demanding sporadic requests are those that have a short response

time, i.e., the corresponding service task has a low latency.

It is possible to find solutions to the scheduling problem if an independent sporadic

task has a laxity l. One such solution, proposed by Mok [Mok93, p. 44], is the

replacement of a sporadic task T by a pseudo-periodic task T0 as seen in Table 10.1.

This transformation guarantees that the sporadic task will always meet its

deadline if the pseudo-periodic task can be scheduled. The pseudo-periodic task

can be scheduled statically. A sporadic task with a short latency will continuously

demand a substantial fraction of the processing resources to guarantee its deadline,

although it might request service very infrequently.

Sporadic Server Task. To reduce the large resource requirements of a

pseudo-periodic task with a long inter-arrival time (period) but a short latency,

Table 10.1 Parameters of the pseudo-periodic task

Parameter Sporadic task Pseudo-periodic task

Computation time, c c c0 ¼ c
Deadline interval, d d d0 ¼ c
Period, p p p0 ¼ Min(l � 1, p)
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Sprunt et al. [Spr89] have proposed the introduction of a periodic server task for

the service of sporadic requests. Whenever a sporadic request arrives during the

period of the server task, it will be serviced with the high priority of the server task.

The service of a sporadic request exhausts the execution time of the server. The

execution time will be replenished after the period of the server. Thus, the server task

preserves its execution time until it is needed by a sporadic request. The sporadic

server task is scheduled dynamically in response to the sporadic request event.

Mode Changes.During the operation of most real-time applications, a number of

different operating modes can be distinguished. Consider the example of a flight

control system in an airplane. When a plane is taxiing on the ground, a different set

of services is required than when the plane is flying. Better resource utilization can

be realized if only those tasks that are needed in a particular operating mode must be

scheduled. If the system leaves one operating mode and enters another, a

corresponding change of schedules must take place.

During system design, one must identify all possible operating and emergency

modes. For each mode, a static schedule that will meet all deadlines is calculated

off-line. Mode changes are analyzed and the appropriate mode change schedules

are developed. Whenever a mode change is requested at run time, the applicable

mode change schedule will be activated immediately. We conclude this section

with a comment by Xu and Parnas [Xu91, p. 134]:

For satisfying timing constraints in hard real-time systems, predictability of the systems

behavior is the most important concern; pre-run-time scheduling is often the only practical

means of providing predictability in a complex system.

10.4 Dynamic Scheduling

After the occurrence of a significant event, a dynamic scheduling algorithm deter-

mines on-line which task out of the ready task set must be serviced next. The

algorithms differ in the assumptions about the complexity of the task model and the

future task behavior [But04].

10.4.1 Scheduling Independent Tasks

The classic algorithm for scheduling a set of periodic independent hard real-time

tasks in a system with a single CPU, the rate monotonic algorithm, was published in
1973 by [Liu73].

Rate Monotonic Algorithm. The rate monotonic algorithm is a dynamic preemptive

algorithm based on static task priorities. It makes the following assumptions about

the task set:

1. The requests for all tasks of the task set {Ti} for which hard deadlines must be

satisfied, are periodic.
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2. All tasks are independent of each other. There exist no precedence constraints or

mutual exclusion constraints between any pair of tasks.

3. The deadline interval of every task Ti is equal to its period pi.
4. The required maximum computation time of each task ci is known a priori and is

constant.

5. The time required for context switching can be ignored.

6. The sum of the utilization factors m of the n tasks with period p is given by

m ¼
X

ci=pibnð21=n � 1Þ:

The term n(21/n � 1) approaches ln 2, i.e., about 0.7, as n goes to infinity.

The rate monotonic algorithm assigns static priorities based on the task periods.

The task with the shortest period gets the highest static priority, and the task with the

longest period gets the lowest static priority. At run time, the dispatcher selects the

task request with the highest static priority.

If all the assumptions are satisfied, the rate monotonic algorithm guarantees that

all tasks will meet their deadline. The algorithm is optimal for single processor

systems. The proof of this algorithm is based on the analysis of the behavior of the

task set at the critical instant. A critical instant of a task is the moment at which the

request of this task will have the longest response time. For the task system as a

whole, the critical instant occurs when requests for all tasks are made simulta-

neously. Starting with the highest priority task, it can be shown that all tasks will

meet their deadlines, even in the case of the critical instant. In a second phase of the

proof it must be shown that any scenario can be handled if the critical-instant
scenario can be handled. For the details of the proof refer to [Liu73].

It is also shown that assumption (6) above can be relaxed in case the task periods

are harmonic, i.e., they are multiples of the period of the highest priority task. In this

case the utilization factor m of the n tasks,

m ¼
X

ci=pib1;

can approach the theoretical maximum of unity in a single processor system.

In recent years, the rate monotonic theory has been extended to handle a set of

tasks where the deadline interval can be different from the period [But04].

Earliest-Deadline-First (EDF) Algorithm. This algorithm is an optimal dynamic

preemptive algorithm in single processor systems which are based on dynamic

priorities. The assumptions (1) to (5) of the rate monotonic algorithm must hold.

The processor utilization m can go up to 1, even when the task periods are not

multiples of the smallest period. After any significant event, the task with the

earliest deadline is assigned the highest dynamic priority. The dispatcher operates

in the same way as the dispatcher for the rate monotonic algorithm.

Least-Laxity (LL) Algorithm. In single processor systems, the least laxity algo-

rithm is another optimal algorithm. It makes the same assumptions as the EDF
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algorithm. At any scheduling decision instant the task with the shortest laxity l, i.
e., the difference between the deadline interval d and the computation time c

d � c ¼ l

is assigned the highest dynamic priority.

In multiprocessor systems, neither the earliest-deadline-first nor the least-laxity

algorithm is optimal, although the least-laxity algorithm can handle task scenarios,

which the earliest-deadline-first algorithm cannot handle and vice-versa.

10.4.2 Scheduling Dependent Tasks

From a practical point of view, results on how to schedule tasks with precedence

and mutual exclusion constraints are much more important than the analysis of the

independent task model. Normally, the concurrently executing tasks must exchange

information and access common data resources to cooperate in the achievement of

the overall system objectives. The observation of given precedence and mutual

exclusion constraints is thus rather the norm than the exception in distributed real-

time systems.

To solve this problem, the priority ceiling protocol was developed by [Sha90].

The priority ceiling protocol can be used to schedule a set of periodic tasks that

have exclusive access to common resources protected by semaphores. These

common resources, e.g., common data structures, can be utilized to realize an

inter-task communication.

The priority ceiling of a semaphore is defined as the priority of the highest

priority task that may lock this semaphore. A task T is allowed to enter a critical

section only if its assigned priority is higher than the priority ceilings of all

semaphores currently locked by tasks other than T. Task T runs at its assigned

priority unless it is in a critical section and blocks higher priority tasks. In this case

it inherits the highest priority of the tasks it blocks. When it exits, the critical section

it resumes the priority it had at the point of entry into the critical section.

The example of Fig. 10.7, taken from [Sha90], illustrates the operation of the

priority ceiling protocol. A system of 3 tasks: T1 (highest priority), T2 (middle

priority), and T3 (lowest priority) compete for three critical regions protected by the

three semaphores S1, S2 and S3.
Schedulability Test for the PriorityCeilingProtocol. The following sufficient schedu-
lability test for the priority ceiling protocol has been given by [Sha90]. Assume a

set of periodic tasks, {Ti} with periods pi and computation times ci. We denote

the worst-case blocking time of a task ti by lower priority tasks by Bi. The set of

n periodic tasks {Ti} can be scheduled, if the following set of inequalities holds, 8
i, 1 � i � n.

ðc1=p1 þ c2=p2 þ � � � þ ci=pi þ Bi=piÞbi(21=i � 1Þ
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In these inequalities the effect of preemptions by higher priority tasks is considered

in the first i terms (in analogy to the rate monotonic algorithm), whereas the worst

case blocking time due to all lower priority tasks is represented in the term Bi/pi.
The blocking term Bi/pi, which can become very significant if a task with a short

period (i.e., small pi) is blocked for a significant fraction of its time, effectively

reduces the CPU utilization of the task system. In case this first sufficient schedul-

ability test fails, more complex sufficient tests can be found in [Sha90]. The priority

ceiling protocol is a good example of a predictable, but non-deterministic schedul-
ing protocol.

Event Action 

1 T3 begins execution.
2 T3 locks S3.
3 T2 is started and preempts T3.
4 T2 becomes blocked when trying to access S2 since the priority of T2 is not higher than the 

priority ceiling of the locked S3. T3 resumes the execution of its critical section at the 
inherited priority of T2.

5 T1 is initiated and preempts T3.
6 T1 locks the semaphore S1. The priority of T1 is higher than the priority ceiling of all locked 

semaphores.
7 T1 unlocks semaphore S1.
8  inherited priority of T2. T1 finishes its execution. T3 continues with the
9
10

T3 locks semaphore S2.
T3 unlocks S2.

11 . At this point T2 can lock S2.  T3 unlocks S3 and returns to its lowest priority
12 T2 locks S3.
13 T2 unlocks S3.
14 T2 unlocks S2.
15 T2 completes. T3 resumes its operation.
16 T3 completes.

1 2 3 4 5 6 7

Task 1

Task 2

Task 3

Event 8 9 10 11 12 13 14 15 16

Critical Section Guarded by: S1 (high) S2 (middle) S3 (middle)

T1:   . ., P(S1), . ., V(S1), . . . (highest priority)
T2:   . ., P(S2), . ., P(S3), . ., V(S3), . ., V(S2), . . (middle priority)
T3:   . ., P(S3), . ., P(S2), . ., V(S2), . ., V(S3), . . (lowest priority)

Command Sequence
Executed by Task:

Time

Fig. 10.7 The priority ceiling protocol (example taken from [Sha90])

254 10 Real-Time Scheduling



Example: The NASA Pathfinder robot on MARS experienced a problem that was diag-

nosed as a classic case of priority inversion, due to a missing priority ceiling protocol. The
full and most interesting story is contained in [Jon97]:

Very infrequently it was possible for an interrupt to occur that caused the (medium

priority) communications task to be scheduled during the short interval while the (high

priority) information bus thread was blocked waiting for the (low priority) meteorological

data thread. In this case, the long-running communications task, having higher priority

than the meteorological task, would prevent it from running, consequently preventing the

blocked information bus task from running. After some time had passed, a watchdog

timer would go off, notice that the data bus task had not been executed for some time,

conclude that something had gone drastically wrong, and initiate a total system reset.

10.5 Alternative Scheduling Strategies

10.5.1 Scheduling in Distributed Systems

In a control system, the maximum duration of an RT transaction is the critical

parameter for the quality of control, since it contributes to the dead time of a control

loop. In a distributed system, the duration of this transaction depends on the sum of the

durations of all processing and communication actions that form the transaction. In

such a system, it makes sense to develop a holistic schedule that considers all these
actions together. In a time-triggered system, the processing actions and the communi-

cation actions can be phase aligned (see Sect. 3.3.4), such that a send slot in the com-

munication system is available immediately after the WCET of a processing action.

It is already difficult to guarantee tight deadlines by dynamic scheduling tech-

niques in a single processor event-triggered multi-tasking system if mutual exclu-

sion and precedence constraints among the tasks must be considered. The situation

is more complex in a distributed system, where the non-preemptive access to the

communication medium must be considered. Tindell [Tin95] analyzes distributed

systems that use the CAN bus as the communication channel and establishes

analytical upper bounds to the communication delays that are encountered by a

set of periodic messages. These results are then integrated with the results of the

node-local task scheduling to arrive at the worst-case execution time of distributed

real-time transactions. One difficult problem is the control of transaction jitter.

Since the worst-case duration of a RT transaction in an event-triggered distributed

system can be exceedingly pessimistic, some researchers are looking at dynamic best-

effort strategies and try to establish bounds based on a probabilistic analysis of the

scheduling problem. This approach is not recommended in hard-real time systems,

since the characterization of rare events is extremely difficult. Rare event occurrences

in the environment, e.g., a lightning stroke into an electric power grid, will cause a

highly correlated input load on the system (e.g., an alarm shower) that is very difficult

to model adequately. Even an extended observation of a real-life system is not

conclusive, because these rare events, by definition, cannot be observed frequently.
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In soft real-time systems (such as multimedia systems) where the occasional

miss of deadline is tolerable, probabilistic analysis is widely used. An excellent survey

on the results of 25 years of research on real-time scheduling is contained in [Sha04].

10.5.2 Feedback Scheduling

The concept of feedback, well established in many fields of engineering, uses

information about the actual behavior of a scheduling system to dynamically adapt

the scheduling algorithms such that the intended behavior is achieved. Feedback

scheduling starts with the establishment and observation of relevant performance

parameters of the scheduling system. In a multimedia systems, the queue size that

develops before a server process is an example of such a relevant performance

parameter. These queue sizes are continuously monitored and the producer of

information is controlled – either slowed down or speeded up – in order to keep the

size of the queue between given levels, the low and high watermark.
By looking at the scheduling problem and control problem in an integrated

fashion, better overall results can be achieved in many control scenarios. For

example, the sample rate of a process can be dynamically adjusted based on the

observed performance of the physical process.

Points to Remember

l A scheduler is called dynamic (or on-line) if it makes its scheduling decisions at

run time, selecting one out of the current set of ready tasks. A scheduler is called

static (or pre-run-time) if it makes its scheduling decisions at compile time. It

generates a dispatching table for the run-time dispatcher off-line.
l A test that determines whether a set of ready tasks can be scheduled so that each

task meets its deadline is called a schedulability test. We distinguish between

exact, necessary, and sufficient schedulability tests. In nearly all cases of task

dependency, even if there is only one common resource, the complexity of an

exact schedulability test algorithm belongs to the class of NP-complete problems

and is thus computationally intractable.
l While the future request times of a periodic task are known a priori, only the mini-

mum interarrival time of a sporadic task is known in advance. The actual points in
timewhen a sporadic taskmust be serviced are not knownahead of the request event.

l The adversary argument states that, in general, it is not possible to construct an

optimal totally on-line dynamic scheduler if there are mutual exclusion con-

straints between a periodic and a sporadic task. The adversary argument accent-

uates the value of a priori information about the behavior in the future.
l In general, the problem of determining theworst-case execution time (WCET) of an

arbitrary sequential program is unsolvable and is equivalent to the halting problem

for Turing machines. The WCET problem can only be solved, if the programmer

provides additional application-specific information at the source code level.
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l In static or pre-run-time scheduling, a feasible schedule of a set of tasks that

guarantees all deadlines, considering the resource, precedence, and synchroni-

zation requirements of all tasks, is calculated off-line. The construction of such

a schedule can be considered as a constructive sufficient schedulability test.
l The rate monotonic algorithm is a dynamic preemptive scheduling algorithm

based on static task priorities. It assumes a set of periodic and independent tasks

with deadlines equal to their periods.
l The Earliest-Deadline-First (EDF) algorithm is a dynamic preemptive schedul-

ing algorithm based on dynamic task priorities. The task with the earliest

deadline is assigned the highest dynamic priority.
l The Least-Laxity (LL) algorithm is a dynamic preemptive scheduling algorithm

based on dynamic task priorities. The task with the shortest laxity is assigned the

highest dynamic priority.
l The priority ceiling protocol is used to schedule a set of periodic tasks that have

exclusive access to common resources protected by semaphores. The priority
ceiling of a semaphore is defined as the priority of the highest priority task that

may lock this semaphore.
l According to the priority ceiling protocol, a task T is allowed to enter a critical

section only if its assigned priority is higher than the priority ceilings of all

semaphores currently locked by tasks other than T. Task T runs at its assigned

priority unless it is in a critical section and blocks higher priority tasks. In this

case, it inherits the highest priority of the tasks it blocks. When it exits the critical

section, it resumes the priority it had at the point of entry into the critical section.
l The critical issue in best-effort scheduling concerns the assumptions about the

input distribution. Rare event occurrences in the environment will cause a highly

correlated input load on the system that is difficult to model adequately. Even an

extended observation of a real-life system is not conclusive, because these rare

events, by definition, cannot be observed frequently.
l In soft real-time systems (such as multimedia systems) where the occasional

miss of deadline is tolerable, probabilistic scheduling strategies are widely used.
l Anytime algorithms are algorithms that improve the quality of the result as more

execution time is provided. They consist of a root segment that calculates a first
approximation of the result of sufficient quality and a periodic segment that
improves the quality of the previously calculated result.

l In feedback scheduling, information about the actual behavior of a scheduling

system is used to dynamically adapt the scheduling algorithms such that the

intended behavior is achieved.
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Review Questions and Problems

10.1 Give taxonomy of scheduling algorithms.

10.2 Develop some necessary schedulability tests for scheduling a set of tasks on

a single processor system.

10.3 What are the differences between periodic tasks, sporadic tasks, and

aperiodic tasks?

10.4 Why is it hard to find the worst-case execution time (WCET) of a program?

10.5 What is the worst-case administrative overhead (WCAO)?

10.6 Given the following set of independent periodic tasks, where the deadline

interval is equal to the period: {T1(5,8); T2(2,9); T3(4,13)}; (notation: task

name(CPU time, period)).

(a) Calculate the laxities of these tasks.

(b) Determine, using a necessary schedulability test, if this task set is

schedulable on a single processor system.

(c) Schedule this task set on a two-processor system with the LL algorithm.

10.7 Given the following set of independent periodic tasks, where the deadline

interval is equal to the period: {T1(5,8); T2(1,9); T3(1,5)}; (notation: task

name(CPU time, period)).

(a) Why is this task set not schedulable with the rate monotonic algorithm

on a single processor system?

(b) Schedule this task set on a single processor system with the EDF

algorithm.

10.8 Why is it not possible to design, in general, an optimal dynamic scheduler?

10.9 Assume that the task set of Fig. 10.5 is executed without the priority ceiling

protocol. At what moment will a deadlock occur? Can this deadlock be

resolved by priority inheritance? Determine the point where the priority

ceiling protocol prevents a task from entering a critical section.

10.10 Discuss the schedulability test of the priority ceiling protocol. What is the

effect of blocking on the processor utilization?

10.11 What are the problems with dynamic scheduling in distributed systems?

10.12 Discuss the issue of temporal performance in best-effort distributed system.

10.13 What is the role of time in static scheduling?

10.14 List some properties of anytime algorithms!

10.15 What is feedback scheduling?
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Chapter 11

System Design

Overview This chapter on architecture design starts with a discussion on design in

general. The designer must get a deep insight into all different aspects of the

problem domain before she/he can design a proper structure for the application.

In computer system design, the most important goal is controlling the complexity of

the evolving artifact. A thorough analysis of the requirements and constraints limits

the design space and avoids the investigation of unrealistic design alternatives. Any

kind of structure restricts the design space and has a negative impact on the

performance of a system, which must be carefully evaluated in real-time systems.

The central step in the development of an architecture is concerned with the

allocation of functions to nearly decomposable clusters of components. Compo-

nents should have a high internal cohesion and simple external interfaces. In the

following, different design styles such asmodel-based design and component-based
design are discussed. The design of safety-critical systems starts with the safety
analysis such as fault tree analysis and/or failure mode and effect analysis (FMEA)

of the envisioned application, and the development of a convincing safety case.
Different standards that must be observed in the design of safety-critical system are

described, such as the IEC 61508 for electric and electronic equipment and the

ARINC DO 178B standard for airborne equipment software. The elimination of all

design errors, e.g., software errors or hardware errata of a large safety-critical

system is a major challenge. Design diversity can help to mitigate the problem of

design errors. The final section of this chapter is devoted to the topic of design for
maintainability in order to reduce the overall life-cycle cost. Maintainability of

software is needed to correct design errors in the software and to adapt the software

to the never-ending needs of an evolving application scenario. If an embedded

system is connected to the Internet, a new threat, the remote attack of the system by

an intruder to exploit existing vulnerabilities, must be considered. The secure

download of a new software version via the Internet is an essential functionality

that should be supported by any embedded system connected to the Internet.

H. Kopetz, Real-Time Systems: Design Principles for Distributed Embedded Applications,
Real-Time Systems Series, DOI 10.1007/978-1-4419-8237-7_11,
# Springer Science+Business Media, LLC 2011
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11.1 System Design

11.1.1 The Design Process

Design is an inherently creative activity, where both the intuitive and the rational
problem solving systems of the human mind are heavily involved. There is a

common core to design activities in many diverse fields: building design, product

design, and computer system design are all closely related. The designer must find a

solution that accommodates a variety of seemingly conflicting goals to solve an

often ill-specified design problem. In the end, what differentiates a good design

from a bad design is often liable to subjective judgment.

Example: Consider the design of an automobile. An automobile is a complex mass-

production product that is composed of a number of sophisticated subsystems (e.g., engine,

transmission, chassis, etc.). Each of these subsystems itself contains hundreds of different

components that must meet given constraints: functionality, efficiency, geometrical form,

weight, dependability, and minimal cost. All these components must cooperate and interact

smoothly, to provide the emergent transportation service and the look and feel that the
customer expects from the system car.

During the purpose analysis phase, the organizational goals and the economic and

technical constraints of an envisioned computer solution are established. If the

evaluation at the end of this phase results in a go ahead decision, a project team is

formed to start the requirement analysis and the architecture design phase. There

are two opposing empirical views how to proceed in these first life cycle phases

when designing a large system:

1. A disciplined sequential approach, where every life-cycle phase is thoroughly

completed and validated before the next one is started (grand design)
2. A rapid-prototyping approach, where the implementation of a key part of the

solution is started before the requirements analysis has been completed (rapid
prototyping)

The rationale for the grand design is that a detailed and unbiased specification of

the complete problem (the What?) must be available before a particular solution

(the How?) is designed. The difficulty with grand design is that there are no clear

stopping rules. The analysis and understanding of a large problem is never com-

plete and there are always good arguments for asking more questions concerning

the requirements before starting with the real design work. Furthermore, the world

evolves while the analysis is done, changing the original scenario. The phrase

paralysis by analysis has been coined to point to this danger.

The rationale for the rapid prototyping approach assumes that, by investigating a

particular solution at an early stage, a lot is learned about the problem space. The

difficulties met during the search for a concrete solution guide the designer in

asking the right questions about the requirements. The dilemma of rapid prototyp-

ing is that ad hoc implementations are developed with great expense. Since the first
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prototype does address limited aspects of the design problem only, it is often

necessary to completely discard the first prototypes and to start all over again.

Both sides have valid arguments that suggest the following compromise: In the

architecture design phase, a key designer should try to get a good understanding of

the architectural properties, leaving detailed issues that affect only the internals of a

subsystem open. If it is not clear how to solve a particular problem, then a

preliminary prototype of the most difficult part should be investigated with the

explicit intent of discarding the solution if the looked-for insight has been gained. In

his recent book [Bro10], Fred Brook states that conceptual integrity of a design is
the result of a single mind.

Some years ago, Peters [Pet79] argued in a paper about design that design

belongs to the set of wicked problems. Wicked problems are described by the

following characteristics:

1. A wicked problem cannot be stated in a definite way, abstracted from its

environment. Whenever one tries to isolate a wicked problem from its surround-

ings, the problem loses its peculiarity. Every wicked problem is somehow

unique and cannot be treated in the abstract.

2. A wicked problems cannot be specified without having a solution in mind. The

distinction between specification (what?) and implementation (how?) is not as
easy as is often proclaimed in academia.

3. Solutions to wicked problems have no stopping rule: for any given solution,

there is always a better solution. There are always good arguments to learn more

about the requirements to produce a better design.

4. Solutions to wicked problems cannot be right or wrong; they can only be better
or worse.

5. There is no definite test for the solution to a wicked problem: whenever a test is

successfully passed, it is still possible that the solution will fail in some other

way.

11.1.2 The Role of Constraints

Every design is embedded in a design space that is bounded by a set of known and

unknown constraints. In some sense, constraints are antonyms to requirements. It is

good practice to start a design by capturing the constraints and classifying them into

soft constraints, hard constraints, and limiting constraints. A soft constraint is a
desired but not obligatory constraint. A hard constraint is a given mandatory

constraint that must not be neglected. A limiting constraint is a constraint that

limits the utility of a design.

Example: In building a house, the mandatory construction code of the area is a hard
constraint, the orientation of the rooms and windows is a soft constraint, while the

construction cost may be a limiting constraint.
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Constraints limit the design space and help the designer to avoid the exploration

of design alternatives that are unrealistic in the given environment. Constraints are

thus our friends, not our adversaries. Special attention must be paid to the limiting

constraints, since these constraints are instrumental for determining the value of a

design for the client. It is good practice to precisely monitor the limiting constraints

as a design proceeds.

Example: In the European research initiative ARTEMIS that intends to develop a cross-

domain architecture for embedded systems, the first step was the capture and documenta-

tion of the requirements and constraints that such an architecture must satisfy. These

constraints are published in [Art06].

11.1.3 System Design Versus Software Design

In the early days of computer-application design, the focus of design was on the

functional aspects of software, with little regard for the nonfunctional properties of
the computations that are generated by the software, such as timing, energy
efficiency, or fault tolerance. This focus has led to software design methods – still

prevalent today – that concentrate on the data transformation aspects of a program

with little regard for the temporal or energy dimension.

Example: A critical constraint in the design of a smart phone is the expected life of a

battery load. This non-functional constraint is overlooked if the focus during the design is

only on the functional properties of the design.

Software per se is a plan describing the operations of a real or virtual machine.

A plan by itself (without a machine) does not have any temporal dimension, cannot
have state (which depends on a precise notion of real-time – see Sect. 4.2.1) and has

no behavior. Only the combination of software and the targeted machine, the

platform, produces behavior. This is one of the reasons why we consider

the component and not the job (see Sect. 4.2.2) as the primitive construct at the

level of architecture design of an embedded system.

The complete functional and temporal specification of the behavior of a job
(i.e., the software for a machine) is much more complicated than the specification

of the behavior of a component. In addition to the four message interfaces of a

component described in Sect. 4.4, the complete specification of a job must include

the functional and temporal properties of the API (application programming inter-

face) of the job to the targeted virtual or real machine [Szy99]. If the underlying

machine is virtual, e.g., an execution environment that is built bottom-up by some

other software, e.g., a hypervisor, the temporal properties of this virtual machine

depend on the software design of the hypervisor and the hardware performance of

the physical machine. But even without a hypervisor, the temporal hardware perfor-

mance ofmany of today’s sophisticated sequential processors withmultiple levels of

caching and speculative execution is difficult to specify. Considering the implica-

tions of Pollack’s rule (see Sect. 8.3.2), we conjecture that in the domain of

embedded real-time systems predictable sequential processors combined with the
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appropriate system and application software will form the IP-cores, the components,
of the envisioned multiprocessor systems-on-chips (MPSoC) of the embedded

system of the future.

The intended behavior of a component can be realized by different implementa-

tion technologies:

1. By designing software for a programmable computer, resulting in a flexible

component consisting of a local operating system with middleware and applica-

tion software modules.

2. By developing software for a field-programmable gate array (FPGA) that imple-

ments the component’s functionality by the proper interconnection of a set of

highly concurrent logic elements.

3. By developing an application specific integrated circuit (ASIC) that implements

the functionality of the component directly in hardware.

Viewed from the outside, the services of a component must be agnostic of the chosen
implementation technology. Only then it is possible to change the implementation of a

component without any effects at the system level. However, from the point of view of

some of the non-functional component characteristics such as energy consumption,

silicon real-estate requirements, flexibility to change, or non-recurring development

costs, different component implementations have vastly different characteristics. In a

number of applications it is desired to develop at first a hardware-agnosticmodel of the

services of a component at the architecture level and to postpone the detailed decisions

about the final implementation technology of the component to a later stage.

Example: In a product for mass-market consumer appliance, it makes sense to first

develop a prototype of a component in software-on-a CPU and to decide later, after the

market acceptance of the product has been established, to shift the implementation to an

FPGA or ASIC.

11.2 Design Phases

Design is a creative holistic human activity that cannot be reduced to following a set

of rules out of a design rule-book. Design is an art, supplemented by scientific

principles. It is therefore in vain to try to establish a complete set of design rules and

to develop a fully automated design environment. Design tools can assist a designer

in handling and representing the design information and can help in the analysis of

design problems. They can, however, never replace a creative designer.

In theory, the design process should be structured into a set of distinct phases:

purpose analysis, requirements capture, architecture design, detailed component

design and implementation, component validation, component integration, system

validation, and finally system commissioning. In practice, such a strict sequential

decomposition of the design process is hardly possible, since the full scope of a new

design problem is not comprehended until the design process is well under its way,

requiring frequent iterations among the design phases.
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The focus of this chapter is on the architecture design phases, while the

validation phases are covered in Chap. 12.

11.2.1 Purpose Analysis

Every rational design is driven by a given purpose. The purpose puts the design into
the wider context of user expectations and economic justification and thus precedes

the requirements. Purpose analysis, i.e., the analysis why a new system is needed

and what is the ultimate goal of a design must precede the requirements analysis,

which already limits the scope of analysis and directs the design effort to a specific

direction. Critical purpose analysis is needed in order to put the requirements into

the proper perspective.

Example: The purpose of acquiring a car is to provide a transportation service. There are

other means of transportation, e.g., public transport, which should be considered in the

purpose analysis phase.

In every project, there is an ongoing conflict between what is desired and what can
be donewithin the given technical and economic constraints. A good understanding

and documentation of these technical and economic constraints reduces the design

space and helps to avoid exploring unrealistic design alternatives.

11.2.2 Requirements Capture

The focus of the requirements phase is to get a good understanding and a concise

documentation of the requirements and constraints of the essential system functions

that provide the economic justification of the project. There is always the tempta-

tion to get sidetracked by irrelevant details about representational issues that

obscure the picture of the whole. Many people find it is easier to work on a well-

specified detailed side problem than to keep focus on the critical system issues. It

requires an experienced designer to decide between a side problem and a critical
system issue.

Every requirement must be accompanied by an acceptance criterion that allows

to measure, at the end of the project, whether the requirement has been met. If it is

not possible to define a distinct acceptance test for a requirement, then the require-

ment cannot be very important: it can never be decided whether the implementation

is meeting this requirement or not. A critical designer will always be suspicious of

postulated requirements that cannot be substantiated by a rational chain of argu-

ments that, at the end, leads to a measurable contribution of the stated requirement

to the purpose of the system.

In the domain of embedded systems, a number of representation standards and
tools have been developed to support the system engineer. Standards for the
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uniform representation of requirements are of particular importance, since they

simplify the communication among designers and users. The recent extension of the

UML (Unified Modeling Language) with the MARTE (Modeling and Analysis of

Real-Time Embedded Systems) profile provides a widely accepted standard for the

representation of real-time requirements [OMG08].

11.2.3 Architecture Design

After the essential requirements have been captured and documented, the most

crucial phase of the life cycle, the design of the system architecture, follows.

Complex systems will evolve from simple systems much more rapidly if there are
stable intermediate forms than if there are not [Sim81]. Stable intermediate forms

are encapsulated by small and stable interfaces that restrict the interactions among

the subsystems. In the context of distributed real-time systems, the architecture

design establishes the decomposition of the overall systems into clusters and

components, the linking interfaces of the components, and the message communi-
cation among the components.

In general, introducing structure restricts the design space and may have a negative

impact on the performance of a system. The more rigid and stable the structure,

the more notable the observed reduction in performance will be. The key issue

is to find the most appropriate structure where the performance penalties are out-

weighed by the other desirable properties of the structure, such as composability,

understandability, energy efficiency, maintainability, and the ease of implementing

fault-tolerance or of adding new functionality in an evolving system and environment.

11.2.4 Design of Components

At the end of the architectural design phase, the requirements have been allocated to

components, and the linking interfaces (LIFs) of the components are precisely

specified in the value domain and in the temporal domain. The design effort can

now be broken down into a set of concurrent design activities, each one focusing on

the design, implementation, and testing of a single component.

The detailed design of the local interface (see Sect. 4.4.5) between a component

and its local environment (e.g., the controlled object or other clusters) is not

covered in the architectural design phase, since only the semantics, but not the
syntax of these local interfaces are needed for the cluster-LIF specification of

the components. It is up to the detailed design of a component to specify and

implement these local interfaces. In some cases, such as the design of the concrete

man-machine interface for the operator, this can be a major activity.

The detailed steps that have to be taken in order to implement the design of a

component depend on the chosen implementation technology. If the services of
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a component are implemented by a software-on-a-CPU design, then the necessary

design steps will differ radically from a design that targets an ASIC as its final

outcome. Since the focus of this book is on the topic of architecture design of

embedded systems, we do not cover the detailed component implementation tech-

niques for the different implementation technologies at any length.

11.3 Design Styles

11.3.1 Model-Based Design

In Chapter two of this book we emphasize the role of model building for the

understanding of any real-world scenario. Model-based design is a design method

that establishes a useful framework for the development and integration of execut-

able models of the controlled object and of the controlling computer system early in

the design cycle.

After finishing the purpose analysis of a control system, in model-based design,
executable high-level models of the controlled object (the plant) and the controlling
computer system are developed in order that the dynamic interaction of these

models can be studied at a high level of abstraction.

The first step in model-based design is concerned with the identification and

mathematical modeling of the dynamics of the controlled object, i.e., the plant.

Where possible, the results of the plant model are compared with experimental data

from the operation of a real plant in order to validate the faithfulness of the plant

model. In a second step, the mathematical analysis of the dynamic plant model is

used for the synthesis of control algorithms that are tuned to the dynamics of the

given plant model. In a third step, the executable plant model and the executable

controlling computer model are integrated in a simulated environment, such that

the correct interplay between the models can be validated and the quality of the

considered control algorithms can be investigated in relation to the plant model.

Although this simulation will often be operated in simulated time (SIL – software in
the loop), it is important that the phase relationship between the messages

exchanged between the plant model und the controlling computer model in the

simulated environment and the (later) real-time control environment is exactly

the same [Per10]. This exact phase relationship among the messages ensures that

the message order in the simulations and in the target system will be alike. Finally,

in the fourth phase the controlling computer system model is translated, possibly

automatically, to the target execution environment of the control computers.

In hardware-in-the-loop simulations (HIL), the simulation models must be

executed in real-time, since subsystems of the simulation are formed by the final

target hardware.

Model-based design makes it possible to study the system performance not only

under normal operating conditions, but also in rare-event situations, e.g., when a
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critical part of the system has failed. During the simulation it is possible to tune the

control algorithms such that a safe operation of the plant in a rare event scenario
can be maintained. Furthermore, a model-based design environment can be used for

automated testing and the training of plant operators.

Example: It is a standard procedure to train pilots on a simulator in order to get them

acquainted with the necessary control actions in case of a rare-event incident that cannot be

reproduced easily during the flight of a real airplane.

A key issue in model-based design focuses on the specification of the linking

interface (LIF) between the plant model and the controlling computer system

model. As already discussed in Sect. 4.4.5, this interface specification must cover

the value dimension and the temporal dimension of the messages that cross the LIF.

The semantic interface models must be presented in an executable form, such that

the simulation of the complete control system can be performed on a high level of

abstraction and the automatic generation of the code for the target control system is

supported. A widely used tool environment for model-based design is the

MATLAB design environment [Att09].

11.3.2 Component-Based Design

In many engineering disciplines, large systems are built from prefabricated com-

ponents with known and validated properties. Components are connected via stable,

understandable, and standardized interfaces. The system engineer has knowledge

about the global properties of the components – as they relate to the system

functions – and of the detailed specification of the component interfaces. Knowl-

edge about the internal design and implementation of the components is neither

needed, nor available in many cases. A prerequisite for such a constructive

approach to system building is that the validated properties of the components are

not affected by the system integration. This composability requirement is an

important constraint for the selection of a platform for the component-based design

of large distributed real-time systems.

Component-based design is a meet-in-the middle design method. On the side

the functional and temporal requirements of the components are derived top-

down from the desired application functions. On the other side, the functional
and temporal capabilities of the available components are provided by the

component specifications (bottom up). During the design process, a proper

match between component requirements and component capabilities must be

established. If there is no component available that meets the requirements, a

new component must be developed.

A prerequisite of any component-based design is a crystal clear component

concept that supports the precise specification of the services that are delivered

and acquired across the component interfaces. The notion of component as a

hardware-software unit, introduced in Sect. 4.1.1 provides for such a component
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concept. In many non-real-time applications, a software-unit is considered to form a

component. In real-time systems, where the temporal properties of components are

as important as the value properties, the notion of a software component is of

questionable utility, since no temporal capabilities can be assigned to software

without associating the software with a concrete machine. The specification of the

temporal properties of the API (application programming interface) between

the application software and the execution environment (middleware, operating

system) of the concrete machine is so involved that a simple specification of the

temporal properties of the API is hardly possible. If the mental effort needed to

understand the specification of the component interfaces is in the same order of

magnitude as the effort needed to understand the internals of the component

operation, the abstraction of a component does not make sense any more.

The temporal capabilities of a (hardware-software) component are determined

by the frequency of the oscillator that drives the component hardware. According to

Sect. 8.2.3, this frequency can be lowered if the voltage is lowered (voltage-
frequency scaling), resulting in substantial savings of the energy required to

perform the computation of the component at the expense of extending the real-

time needed for the execution of the computation. A holistic resource scheduler that

is aware of the temporal needs and the energy requirements can match the temporal

capabilities of a component to the temporal requirements of the application, thus

saving energy. Energy saving is very important in mobile battery operated devices,

an important sector of the embedded systems market.

11.3.3 Architecture Design Languages

The representation of the platform independent model, the PIM (the design at the

architectural level), e.g., in the form of components and messages, requires a

notation that is apt for this purpose.

In 2007, the Object Management Group (OMG) extended the Unified Modeling

Language (UML) by a profile called MARTE (Modeling and Analysis of Real-

Time and Embedded system) that extends UML to support the specification, design

and analysis of embedded real-time systems at the architectural level [OMG08].

UML-MARTE targets the modeling of both the software part and of the hardware

part of an embedded system. The core concepts of UML-MARTE are expressed in

two packages, the foundation package that is concerned with structural models and

the causality package that focuses on behavioral modeling and timing aspects. In

UML-MARTE the fundamental unit of behavior is called an action that transforms

a set of inputs into a set of outputs, taking a specified duration of real-time.

Behaviors are composed out of actions and are initiated by triggers. The UML-

MARTE specification contains a special section on the modeling of time. It

distinguishes between three different kinds of time abstractions: (1) logical time
(called causal/temporal ) that is only concerned with temporal order without any

notion of a temporal metric between events, (2) discrete time (called clocked-
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synchronous) where the continuum of time is partitioned by a clock into a set of

ordered granules and where actions may be performed within a granule, and (3)

real time (called physical/real time) where the progression of real-time is precisely

modeled. For a detailed description of UML MARTE refer to [OMG08].

Another example of an architecture design language is the AADL (Architecture

Analysis and Design Language) developed at the Carnegie Mellon University

Software Engineering Institute and standardized in 2004 by the Society of Automo-

tive Engineers (SAE). AADL has been designed to specify and analyze the architec-

ture of large embedded real-time systems. The core concept of AADL is the notion

of a component that interacts with other components across interfaces. An AADL

component is a software unit enhanced by attributes that capture the characteristics

of the machine that is bound to the software unit, such that timing requirements and

the worst-case execution time (WCET) of a computation can be expressed. AADL

components interact exclusively though defined interfaces that are bound to each

other by declared connections. AADL supports a graphical user interface and

contains language constructs that are concerned with the implementation of compo-

nents and the grouping of components into more abstract units called packages.
There are tools available to analyze an AADL design from the point of view of

timing and reliability. For a detailed description of AADL refer to [Fei06].

GIOTTO [Hen03] is a language for representing the design of a time-triggered

embedded system at the architectural level. GIOTTO provides for intermediate

abstractions that allow the design engineer to annotate the functional programming

modules with temporal attributes that are derived from the high-level stability

analysis of the control loops. In the final development step, the assignment of the

software modules to the target architecture, these annotations are constraints that

must be considered by the GIOTTO compiler.

System C is an extension of C++ that enables the seamless hardware/software

co-simulation of a design at the architectural level, and provides for a step-by-step

refinement of a design down to the register transfer level of a hardware implemen-

tation or to a C program [Bla09]. System C is well suited to represent the function-

ality of a design at the PIM level.

11.3.4 Test of a Decomposition

We do not know how to measure the quality of the result of the architecture design

phase on an absolute scale. The best we can hope to achieve is to establish a set of

guidelines and checklists that facilitate the comparison of two design alternatives

relative to each other. It is good practice to develop a project-specific checklist for

the comparison of design alternatives at the beginning of a project. The guidelines

and checklists presented in this section can serve as a starting point for such a

project-specific checklist.

Functional Coherence. A component should implement a self-contained function

with high internal coherence and low external interface complexity. If the
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component is a gateway, i.e., it processes input/output signals from its environment,

only the abstract message interface, the LIF, to the cluster and not the local interface

to the environment (see Sect. 4.3.1) is of concern at the level of architecture design.

The following list of questions is intended to help determine the functional coher-

ence and the interface complexity of a component:

1. Does the component implement a self-contained function?

2. Is the g-state of the component well defined?

3. Is it sufficient to provide a single level of error recovery after any failure, i.e., a

restart of the whole component? A need for a multi-level error recovery is

always an indication of a weak functional coherence.

4. Are there any control signals crossing the message interface or is the interface of

a component to its environment a strict data-sharing interface? A strict data-

sharing interface is simpler and should therefore be preferred. Whenever possi-

ble, try to keep the temporal control within the subsystem that you are designing

(e.g., on input, information pull is preferable over information push see

Sect. 4.4.1)!

5. How many different data elements are passed across the message interface? Are

these data elements part of the interface model of the component? What are the

timing requirements?

6. Are there any phase-sensitive data elements passed across the message interface?

Testability. Since a component implements a single function, it must be possible to

test the component in isolation. The following questions should help to evaluate the

testability of a component:

1. Are the temporal as well as the value properties of the message interface

precisely specified such that they can be simulated in a test environment?

2. Is it possible to observe all input/output messages and the g-state of a component

without the probe effect?

3. Is it possible to set the g-state of a component from the outside to reduce the

number of test sequences?

4. Is the component software deterministic, such that the same input cases will

always lead to the same results?

5. What are the procedures to test the fault-tolerance mechanisms of the component?

6. Is it possible to implement an effective built-in self test into the component?

Dependability: The following checklist of questions refers to the dependability

aspects of a design:

1. What is the effect of the worst malicious failure of the component to the rest of

the cluster? How is it detected? How does this failure affect the minimum

performance criterion?

2. How is the rest of the cluster protected from a faulty component?

3. In case the communication system fails completely, what is the local control

strategy of a component to maintain a safe state?
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4. How long does it take other components of the cluster to detect a component

failure? A short error-detection latency simplifies the error handling drastically.

5. How long does it take to restart a component after a failure? Focus on the fast

recovery from any kind of a single fault – A single Byzantine fault [Dri03]. The zero

fault case takes care of itself and the two ormore independent Byzantine fault case is

expensive, unlikely to occur, and unlikely to succeed. How complex is the recovery?

6. Are the normal operating functions and the safety functions implemented in

different components, such that they are in different FCUs?

7. How stable is the message interface with respect to anticipated change require-

ments? What is the probability and impact of changes of a component on the rest

of the cluster?

Energy and Power. Energy consumption is a critical non-functional parameter of a

mobile device. Power control helps to reduce the silicon die temperature and

consequently the failure rate of devices:

1. What is the energy budget of each component?

2. What is the peak power dissipation? How will peak-power effect the tempera-

ture and the reliability of the device.

3. Do different components of an FCU have different power sources to reduce the

possibility of common mode failures induced by the power supply? Is there a

possibility of a common mode failure via the grounding system (e.g., lightning

stroke)? Are the FCUs of an FTU electrically isolated?

Physical Characteristics. There are many possibilities to introduce common-mode

failures by a careless physical installation. The following list of questions should

help to check for these:

1. Are mechanical interfaces of the replaceable units specified, and do these mechan-

ical boundaries of replaceable units coincide with the diagnostic boundaries?

2. Are the FCUs of an FTU (see Sect. 6.4.2) mounted at different physical loca-

tions, such that spatial proximity faults (e.g., a common mode external fault such

as water, EMI, and mechanical damage in case of an accident) will not destroy

more than one FCU?

3. What are the cabling requirements? What are the consequences of transient

faults caused by EMI interference via the cabling or by bad contacts?

4. What are the environmental conditions (temperature, shock, and dust) of the

component? Are they in agreement with the component specifications?

11.4 Design of Safety-Critical Systems

The economic and technological success of embedded systems in many applications

leads to an increased deployment of computer systems in domains where a computer

failure can have severe consequences. A computer system becomes safety-critical
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(or hard real-time) when a failure of the computer system can have catastrophic

consequences, such as the loss of life, extensive property damage, or a disastrous

damage to the environment.

Example: Some examples of safety critical embedded systems are: a flight-control system

in an airplane, an electronic-stability program in an automobile, a train-control system, a

nuclear reactor control system, medical devices such as heart pacemakers, the control of the

electric power grid, or a control system of a robot that interacts with humans.

11.4.1 What Is Safety?

Safety can be defined as the probability that a system will survive a given time-span
without the occurrence of a critical failure mode that can lead to catastrophic
consequences. In the literature [Lal94] the magical number 109 h, i.e., 115,000

years, is the MTTF (mean-time-to-failure) that is associated with safety-critical

operations. Since the hardware reliability of a VLSI component is less than 109 h, a

safety-aware design must be based on hardware-fault masking by redundancy. It is

impossible to achieve confidence in the correctness of the design to the level of the

requiredMTTF in safety-critical applications by testing only – extensive testing can

establish confidence in a MTTF in the order of 104 to 105 h [Lit93]. A formal

reliability model must be developed in order to establish the required level of

safety, considering the experimental failure rates of the subsystems and the redun-

dant structure of the system.

Mixed-Criticality Architectures. Safety is a system property – the overall system

design determines which subsystems are safety-relevant and which subsystems can

fail without any serious consequences on the remaining safety margin. In the past,

many safety-critical functions have been implemented on dedicated hardware,

physically separated from the rest of the system. Under these circumstances, it is

relatively easy to convince a certification authority that any unintended interference

of safety-critical and non-safety-critical system functions is barred by design.

However, as the number of interacting safety-critical functions grows, a sharing

of communication and computational resources becomes inevitable. This results

in a need of mixed-criticality architectures, where applications of different critical-
ity can coexist in a single integrated architecture and the probability of any

unintended interference, both in the domains of value and time, among these

different-criticality applications must be excluded by architectural mechanisms.

If mixed-criticality partitions are established by software on a single CPU, the

partitioning system software, e.g., a hypervisor, is assigned the highest criticality

level of any application software module that is executed on this system.

Fail-Safe Versus Fail-Operational. In Sect. 1.5.2 a fail-safe system has been

defined as a system, where the application can be put into a safe state in case of a

failure. At present, the majority of industrial systems that are safety-relevant fall

into this category.
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Example: In most scenarios, a robot is in a safe state when it ceases to move. A robot

control system is safe if it either produces correct results (both in the domain of value and

time) or no results at all, i.e., the robot comes to a standstill. The safety-requirement of a

robot control system is thus a high error-detection coverage (see Sect. 6.1.2).

In a number of applications, there exists a basic mechanical or hydraulic control

system that keeps the application in a safe state in case of a failure of the computer

control system that optimizes the performance. In this case it is sufficient if the

computer system is guaranteed to fail cleanly (see Sect 6.1.3), i.e., inhibits its

outputs when a failure is detected.

Example: The ABS system in a car optimizes the braking action, depending on the surface

condition of the road. If the ABS system fails cleanly, the conventional hydraulic brake

system is still available to bring a car to a safe stop.

There exist safety-relevant embedded applications where the physical system

requires the continuous computer control in order to maintain a safe state. A total

loss of computer control may cause a catastrophic failure of the physical system.

In such an application, which we call fail-operational, the computer must continue

to provide an acceptable level of service, if failures occur within the computer

system.

Example: In a modern airplane, there is no mechanical or hydraulic backup to the

computer-based flight control system. Therefore the flight control system must be fail-
operational.

Fail-operational systems require the implementation of active redundancy (as

discussed in Sect. 6.4) to mask component failures.

In the future, it is expected that the number of fail-operational systems will

increase for the following reasons:

1. The cost of providing two subsystems based on different technologies – a basic

mechanical or hydraulic backup subsystem for basic safety functions and

an elaborate computer-based control system to optimize the process – will

become prohibitive. The aerospace industry has already demonstrated that it is

possible to provide fault-tolerant computer systems that meet challenging safety

requirements.

2. If the difference between the functional capabilities of the computer-based

control system and the basic mechanical safety system increases further and

the computer system is available most of the time, then the operator may not

have any experience in controlling the process safely with the basic mechanical

safety system any more.

3. In some advanced processes, computer-based non-linear control strategies are

essential for the safe operation of a process. They cannot be implemented in a

simple safety system any more.

4. The decreasing hardware costs make fail-operational (fault-tolerant) systems

that require no expensive on-call maintenance competitive in an increasing

number of applications.
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11.4.2 Safety Analysis

The architecture of a safety-critical system must be carefully analyzed before it is

put into operation in order to reduce the probability that an accident caused by a

computer failure will occur.

Damage is a pecuniary measure for the loss in an accident, e.g., death, illness,

injury, loss of property, or environmental harm. Undesirable conditions that have

the potential to cause or contribute to an accident are called hazards. A hazard is

thus a dangerous state that can lead to an accident, given certain environmental

triggering conditions. Hazards have a severity and a probability. The severity is

related to the worst potential damage that can result from the accident associated

with the hazard. The severity of hazards is often classified in a severity class. The

product of hazard severity and hazard probability is called risk. The goal of safety
analysis and safety engineering is to identify hazards and to propose measures that

eliminate or at least reduce the hazard or reduce the probability of a hazard turning

into a catastrophe, i.e., to minimize the risk [Lev95]. A risk originating from a

particular hazard should be reduced to a level that is as low as reasonably practical
(ALARP). This is a rather imprecise statement that must be interpreted with good

engineering judgment. An action that is provided to reduce the risk associated with

a hazard to a tolerable level is called a safety function. Functional safety encom-

passes the analysis, design, and implementation of safety functions. There exists an

international standard, IEC 61508 on functional safety.

Example: A risk minimization technique is the implementation of an independent safety

monitor that detects a hazardous state of the controlled object and forces the controlled

object into a safe state.

In the following we discuss two safety analysis techniques, fault tree analysis
and failure mode and effect analysis.

Fault Tree Analysis. A fault tree provides graphical insight into the possible

combinations of component failures that can lead to a particular system failure,

i.e., an accident. Fault tree analysis is an accepted methodology to identify hazards

and to increase the safety of complex systems [Xin08]. The fault tree analysis

begins at the system level with the identification of the undesirable failure event

(the top event of the fault tree). It then investigates the subsystem failure conditions

that can lead to this top event and proceeds down the tree until the analysis stops

at a basic failure, usually a component failure mode (events in ellipses). The parts of

a fault tree that are still undeveloped are identified by the diamond symbol.

The failure conditions can be connected by the AND or the OR symbol. AND

connectors typically model redundancy or safety mechanisms.

Example: Figure 11.1 depicts the fault tree of an electric iron. The undesirable top event

occurs if the user of the electric iron receives an electric shock. Two conditions must be

satisfied for this event to happen: the metal parts of the iron must be under high voltage

(hazardous state) and the user must be in direct or indirect contact with the metal parts, i.e.,

the user either touches the metal directly or touches a wet piece of cloth that conducts the
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electricity. The metal parts of the iron will be under high voltage if the insulation of a wire

that touches the metal inside the iron is defect and the ground-current monitor that is

supposed to detect the hazardous state (the metal parts are under high voltage) is defect.

Fault trees can be formally analyzed with mathematical techniques. Given the

probability of basic component failures, the probability of the top event of a static

fault tree can be calculated by standard combinatorial approaches.

Warm and cold spares, shared pools of resources, and sequence dependencies in

which the order of the failure occurrence determines the state of the system, require

more elaborate modeling techniques. A fault tree that cannot by analyzed by

combinatorial approaches is called a dynamic fault tree. A dynamic fault tree is

transformed into a Markov chain that can be solved by numerical techniques. There

are excellent computer tools available that assist the design engineer in evaluating

the reliability and safety of a given design, e.g., Mobius [Dea02].

Failure Mode and Effect Analysis (FMEA). Failure Mode and Effect Analysis

(FMEA) is a bottom-up technique for systematically analyzing the effects of

possible failure modes of components within a system to detect weak spots of the

design and to prevent system failures from occurring. FMEA requires a team of

experienced engineers to identify all possible failure modes of each component and

to investigate the consequences of every failure on the service of the system at the

system/user interface. The failure modes are entered into a standardized work sheet

as sketched in Fig. 11.2.

A number of software tools have been developed to support the FMEA. The first

efforts attempted to reduce the bookkeeping burden by introducing customized

spreadsheet programs. Recent efforts have been directed towards assisting the

reasoning process and to provide a system wide FMEA analysis [Sta03].

FMEA is complementary to the fault tree analysis, which was discussed in the

previous section. While the fault tree analysis starts from the undesirable top event,

and proceeds down to the component failures that are the cause of this system

failure, the FMEA starts with the components and investigates the effects of the

component failure on the system functions.

user receives electric shock

metal under high voltage user in contact with metal

user touches wet
cloth that is in

contact with iron

user touches
metal of iron

ground current
monitor defect

insulation defect,
blank wire

touches metal

ORAND

AND

Fig. 11.1 Fault tree for an electric iron
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Dependability Modeling. A dependability model is a model of a distributed system

constructed for the purpose of analyzing the reliability of behavior of the envi-

sioned system. A good starting point for a reliability model is a structure block

diagram derived from the architectural representation of the design, where the

blocks are components and the connection among components are the dependencies

among the components. The blocks are annotated with the failure rates and the

repair rates of components, where the repair rate after a transient fault, closely

related to the g-state cycle, is of particular importance, since most of the faults are

transients. If there is any dependency among the failure rates of components, e.g.,

caused by the co-location of components on the same hardware unit, these depen-

dencies must be carefully evaluated, since the correlated failures of components

have a strong impact on the overall reliability. The correlation of failures among

replicated components in a fault-tolerant design is of particular concern. There are a

number of software tools to evaluate the reliability and availability of a design, such

as the Mobius tool [Dea02].

The dependability analysis establishes the criticality of each function for the

analyzed mission. The criticality determines the level of attention that must

be given to the component that implements the function in the overall design of

the system.

An example for the criticality level assignment of functions with respect to the

airworthiness of a computer system onboard an aircraft is given in Table 11.1.

11.4.3 Safety Case

A safety case is a combination of a set of sound and well-documented arguments

supported by analytical and experimental evidence concerning the safety of a

component failure mode failure effect probability criticality

Fig. 11.2 Worksheet for an FMEA

Table 11.1 Criticality level (Adapted from [ARI92])

Criticality Failure of function

Level A Results in catastrophic failure condition for the aircraft

Level B Results in hazardous/severe-major failure condition for the

aircraft

Level C Results in major failure condition for the aircraft

Level D Results in minor failure condition for the aircraft

Level E Has no effect on aircraft operational capability or pilot workload
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given design. The safety case must convince an independent certification authority

that the system under consideration is safe to deploy. What exactly constitutes a

proper safety case of a safety-critical computer system is a subject of intense debate.

Outline of the Safety Case. The safety case must argue why it is extremely unlikely

that faults will cause a catastrophic failure. The arguments that are included in the

safety case will have a major influence on design decisions at later stages of the

project. Hence, the outline of the safety case should be planned during the early

stages of a project.

At the core of the safety case is a rigorous analysis of the envisioned hazards and

faults that could arise during the operation of the system and could cause cata-

strophic effects, such as harm to humans, economic loss, or severe environmental

damage. The safety case must demonstrate that sufficient provisions (engineering

and procedural) have been taken to reduce the risk to a level that is acceptable to

society and why some other possible measures have been excluded (maybe due to

economic or procedural reasons). The evidence is accumulated as the project

proceeds. It consists of management evidence (ensuring that all prescribed proce-

dures have been followed), design evidence (demonstrating that an established

process model has been followed), and testing and operational evidence that is

collected during the test phases and the operational phases of the target system or

similar systems. The safety case is thus a living document.
A safety case will combine evidence from independent sources to convince the

certification authority that the system is safe to deploy. Concerning the type of

evidence presented in a safety case, it is commonly agreed that:

1. Deterministic evidence is preferred over probabilistic evidence (see Sect. 5.6).

2. Quantitative evidence is preferred over qualitative evidence.

3. Direct evidence is preferred over indirect evidence.

4. Product evidence is preferred over process evidence.

Computer systems can fail for external and internal reasons (refer to Sect. 6.1).

External reasons are related to the operational environment (e.g., mechanical stress,

external electromagnetic fields, temperature, wrong input), and to the system

specification. The two main internal reasons for failure are:

1. The computer hardware fails because of a random physical fault. Section 6.4

presented a number of techniques how to detect and handle random hardware

faults by redundancy. The effectiveness of these fault-tolerance mechanisms

must be demonstrated as part of the safety case, e.g., by fault injection

(Sect. 12.4).

2. The design, which consists of the software and hardware, contains residual

design faults. The elimination of the design faults and the validation that a

design (software and hardware) is fit for purpose is one of the great challenges
of the scientific and engineering community. No single validation technology

can provide the required evidence that a computer system will meet ultra-high

dependability requirements.
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Whereas standard fault-tolerance techniques, such as the replication of components

for the implementation of triple-modular redundancy, are well established to mask

the consequences of random hardware failures, there is no such standard technique

known for the mitigation of errors in the design of software or hardware.

Properties of the Architecture. It is a common requirement of a safety critical

application that no single fault, which is capable of causing a catastrophic failure,

may exist in the whole system. This implies that for a fail-safe application, every
critical error of the computer must be detected within such a short latency that the

application can be forced into the safe state before the consequences of the error

affect the system behavior. In a fail-operational application, a safe system service

must be provided even after a single fault in any one of the components has occurred.

Fault-Containment Unit (FCU). At the architectural level, it must be demonstrated

that every single fault can only affect a defined FCU and that it will be detected at

the boundaries of this FCU. The partitioning of the system into independent FCUs

is thus of utmost concern.

Experience has shown that there are a number of sensitive points in a design that

can lead to a common-mode failure of all components within a distributed system:

1. A single source of time, such as a central clock.

2. A babbling component that disrupts the communication among the correct

components in a communication system with shared resources (e.g., a bus

system).

3. A single fault in the power supply or in the grounding system.

4. A single design error that is replicated when the same hardware or system

software is used in all components.

Design Faults. A disciplined software-development process with inspections and

design reviews reduces the number of design faults that are introduced into the

software during initial development. Experimental evidence from testing, which in

itself is infeasible to demonstrate the safety of the software in the ultra-dependable

region, must be combined with structural arguments about the partitioning of the

system into autonomous fault-containment units. The credibility can be further

augmented by presenting results from formal analysis of critical properties and

the experienced dependability of previous generations of similar systems. Experi-

mental data about field-failure rates of critical components form the input to

reliability models of the architecture to demonstrate that the system will mask

random component failures with the required high probability. Finally, diverse
mechanisms play an important role in reducing the probability of common-mode

design failures.

Composable Safety Argument. Composability is another important architectural

property and helps in designing a convincing safety case (see also Sect. 2.4.3). Assume

that the components of a distributed system can be partitioned into two groups: one

group of components that is involved in the implementation of safety critical functions

and another group of components that is not involved in safety-critical functions. If it
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can be shown at the architectural level, that no error in any one of the not-involved

components can affect the proper operation of the components that implement the

safety critical function, it is possible to exclude the not-involved components from

further consideration during the safety case analysis.

11.4.4 Safety Standards

The increasing use of embedded computers in diverse safety-critical applications

has prompted the appearance of many domain-specific safety-standards for the

design of embedded systems. This is a topic of concern, since differing safety

standards are roadblocks to the deployment of a cross-domain architecture and

tools. A standardized unified approach to the design and certification of safety-

critical computer system would alleviate this concern.

In the following, we discuss two safety standards that have achieved wide

attention in the community and have been practically used in the design of safety-

relevant embedded systems.

IEC 61508. In 1998, the International Electronic Commission (IEC) has devel-

oped a standard for the design of Electric/Electronic and Programmable Electronic

(E/E/PE) safety related systems, known as IEC 61508 standard on functional
safety. The standard is applicable to any safety-related control or protection system
that uses computer technology. It covers all aspects in the software/hardware design

and operation of safety-systems that operate on demand, also called protection
systems, and safety-relevant control systems that operate in continuous mode.

Example: An example for a safety system that operates on demand (a protection system) is

an emergency shutdown system in a nuclear power plant.

Example: An example of a safety-relevant control system is a control system in a chemical

plant that keeps a continuous chemical process within safe process parameters.

The corner stone of IEC 61508 is the accurate specification and design of the safety-
functions that are needed to reduce the risk to a level as low as reasonably practical
(ALARP) [Bro00]. The safety functions should be implemented in an independent

safety channel. Within defined system boundaries, the safety functions are assigned

to Safety-Integrity Levels (SIL), depending on the tolerated probability for a failure
on demand for protection systems and a probability of failure per hour for safety-
relevant control systems (Table 11.2).

The IEC 61508 standard addresses random physical faults in the hardware,

design faults in hardware and software, and failures of communication in a

distributed system. IEC 61508-2 deals with the contribution of fault-tolerance to

the dependability of the safety function. In order to reduce the probability of design

faults of hardware and software, the standard recommends the adherence to a

disciplined software development process and the provision of mechanisms that

mitigate the consequences of remaining design faults during the operation of a

system. It is interesting to note that dynamic reconfiguration mechanisms are not
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recommended in systems above SIL 1. IEC 61508 is the foundation for a number of

domain specific safety standards, such as the emerging ISO 26262 standard for

automotive applications, EN ISO 13849 for the machinery and off-highway indus-

try, and IEC 60601 and IEC 62304 for medical devices.

Example: [Lie10] gives an example for the assignment of the automotive safety integrity
level (ASIL) according to ISO 26262 to the two tasks, the functional task and the monitor-
ing task, of an electronic actuator pedal (EGAS) implementation. If a certified monitoring
task that detects an unsafe state and is guaranteed to bring the system into a safe state, is

independent of the functional task, then the functional task does not have to be certified.

RTCA/DO-178B and DO-254. Over the past decades, safety-relevant computer

systems have been deployed widely in the aircraft industry. This is the reason

why the aircraft industry has extended experience in the design and operation of

safety-relevant computer systems. The document RTCA/DO-178B: Software Con-
siderations in Airborne Systems and Equipment Certification [ARI92] and the

related document RTCA/DO-254: Design Assurance Guidance for airborne elec-
tronic hardware [ARI05] contain standards and recommendations for the design

and validation of the software and hardware for airborne safety-relevant computer

systems. These documents have been developed by a committee consisting of

representatives of the major aerospace companies, airlines, and regulatory bodies

and thus represent an international consensus view on a reasonable and practical

approach that produces safe systems. Experienced with the use of this standard has

been gained within a number of major projects, such as the application of RTCA/
DO-178B in the design of the Boeing 777 aircraft and follow-on aircrafts.

The basic idea of RTCA/DO-178B is a two phase approach: in a first phase, the

planning phase, the structure of the safety case, the procedures that must be

followed in the execution of the project, and the produced documentation is defined.

In the second phase, the execution phase, it is checked that all procedures that are

established in the first phase are precisely adhered to in the execution of the project.

The criticality of the software is derived from the criticality of the software-related

function that has been identified during safety analysis and is classified according to

Table 11.1. The rigor of the software development process increases with an

increase in the criticality level of the software. The standard contains tables and

checklists that suggest the design, validation, documentation, and project manage-

ment methods that must be followed when developing software for a given critical-

ity level. At higher criticality levels, the inspection procedures must be performed

by personal that is independent from the development group. For the highest

Table 11.2 Safety integrity level (SIL) of safety functions

Safety integrity

level

Average tolerated probability

for a failure per demand

Average tolerated probability

for a failure per hour

SIL 4 �10�5 to <10�4 �10�9 to <10�8

SIL 3 �10�4 to <10�3 �10�8 to <10�7

SIL 2 �10�3 to <10�2 �10�7 to <10�6

SIL 1 �10�2 to <10�1 �10�6 to <10�5
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criticality level, level A, the application of formal methods is recommended, but

not demanded.

When it comes to the elimination of design faults, both standards, IEC 61508 and
RTCA/DO-178B demand a rigorous software development process, hoping that

software is developed according to such a process will be free of design faults.

From a certification point of view, an evaluation of the software product would be

more appealing than an evaluation of the development process, but we must

recognize there are fundamental limitations concerning the validation of a software

product by testing [Lit93].

Recently, the new standard RTCA/DO-297 Integrated Modular Avionics (IMA)
Development Guidance and Certification Considerations has been published that

addresses the role of design methodologies, architectures, and partitioning methods

in the certification of modern integrated avionics systems in commercial aircraft.

This standard also considers the contribution of time-triggered partitioning

mechanisms in the design of safety-relevant distributed systems.

11.5 Design Diversity

Field data on the observed reliability of many large computer systems indicate that

a significant and increasing number of computer system failures are caused by

design errors in the software and not by physical faults of the hardware. While the

problems of random physical hardware faults can be solved by applying redun-

dancy (see Sect 6.4), no generally accepted procedure to deal with the problem of

design (software) errors has emerged. The techniques that have been developed for

handling hardware faults are not directly applicable to the field of software, because

there is no physical process that causes the aging of the software.

Software errors are design errors that have their root in the unmanaged com-

plexity of a design. In [Boe01] the most common software errors are analyzed.

Because many hardware functions of a complex VLSI chip are implemented in

microcode that is stored in a ROM, the possibility of a design error in the hardware

must be considered in a safety-critical system. The issue of a single design error that

is replicated in the software of all nodes of a distributed system warrants further

consideration. It is conceivable that an FTU built from nodes based on the same

hardware and using the same system software exhibits common-mode failures

caused by design errors in the software or in the hardware (micro-programs).

11.5.1 Diverse Software Versions

The three major strategies to attack the problem of unreliable software are the

following:

1. To improve the understandability of a software system by introducing a structure

of conceptual integrity and by simplifying programming paradigms. This is, by
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far, the most important strategy that has been widely supported throughout

this book.

2. To apply formal methods in the software development process so that the

specification can be expressed in a rigorous form. It is then possible to verify

formally – within the limits of today’s technology – the consistency between a

high-level specification expressed in a formal specification language and the

implementation.

3. To design and implement diverse versions of the software such that a safe level

of service can be provided even in the presence of design faults.

In our opinion, these three strategies are not contradictory, but complementary.

An understandable and well-structured software system is a prerequisite for the

application of any of the other two techniques, i.e., program verification and

software diversity. In safety-critical real-time systems, all three strategies should

be followed to reduce the number of design errors to a level that is commensurate

with the requirement of ultra-high dependability.

Design diversity is based on the hypothesis that different programmers using

different programming languages and different development tools don’t make the

same programming errors. This hypothesis has been tested in a number of con-

trolled experiments with a result that it is only partially encouraging [Avi85].

Design diversity increases the overall reliability of a system. It is, however, not

justified to assume that the errors in the diverse software versions that are developed

from the same specification are not correlated [Kni86].

The detailed analysis of field data of large software systems reveals that a

significant number of system failures can be traced to flaws in the system specifica-

tion. To be more effective, the diverse software versions should be based on

different specifications. This complicates the design of the voting algorithm. Prac-

tical experience with non-exact voting schemes has not been encouraging [Lal94].

What place does software diversity have in safety critical real-time systems? The

following case study of a fault-tolerant railway signaling system that is installed in a

number of European train stations to increase the safety and reliability of the train

service is a good example of the practical utility of software diversity.

11.5.2 An Example of a Fail-Safe System

The VOTRICS train signaling system that has been developed by Alcatel [Kan95]

is an industrial example of the application of design diversity in a safety-critical

real-time environment. The objective of a train signaling system is to collect data

about the state of the tracks in train stations, i.e., the current positions and move-

ments of the trains and the positions of the switches, and to set the signals and shift

the switches such that the trains can move safely through the station according

to the given timetable entered by the operator. The safe operation of the train system

is of utmost concern.
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The VOTRICS system is partitioned into two independent subsystems. The first

subsystem accepts the commands from the station operators, collects the data from

the tracks, and calculates the intended position of the switches and signals so that

the train can move through the station according to the desired plan. This subsystem

uses a TMR architecture to tolerate a single hardware fault.

The second subsystem, called the safety bag, monitors the safety of the state of

the station. It has access to the real-time database and the intended output com-

mands of the first subsystem. It dynamically evaluates safety predicates that are

derived from the traditional “rule book” of the railway authority. In case it cannot

dynamically verify the safety of an intended output state, it has the authority to

block the outputs to the switching signals, or to even activate an emergency

shutdown of the complete station, setting all signals to red and stopping all trains.

The safety bag is also implemented on a TMR hardware architecture.

The interesting aspect about this architecture is the substantial independence of

the two diverse software versions. The versions are derived from completely

different specifications. Subsystem one takes the operational requirements as the

starting point for the software specification, while subsystem two takes the estab-

lished safety rules as its starting point. Common mode specification errors can thus

be ruled out. The implementation is also substantially different. Subsystem one is

built according to a standard programming paradigm, while subsystem two is based

on expert-system technology. If the rule-based expert system does not come up with

a positive answer within a pre-specified time interval, a violation of a safety

condition is assumed. It is thus not necessary to analytically establish a WCET

for the expert system (which would be very difficult).

The system has been operational in different railway stations over a number of

years. No case has been reported where an unsafe state remained undetected. The

independent safety verification by the safety bag also has a positive effect during

the commission phase, because failures in subsystem one are immediately detected

by subsystem two.

From this and other experiences we can derive the general principle that in a

safety-critical system, the execution of every safety-critical function must be

monitored by a second independent channel based on a diverse design. There
should not be any safety-critical function on a single channel system.

11.5.3 Multilevel System

The technique described above can also be applied to fail-operational applications

that are controlled by a two-level computer system (Fig. 11.3). The higher-level

computer system provides full functionality, and has a high-error detection cover-

age. If the high-level computer system fails, an independent and differently

designed lower-level computer system with reduced functionality takes over.

The reduced functionality must be sufficient to guarantee safety.
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Such an architecture has been deployed in the computer system for the space

shuttle [Lee90, p. 297]. Along with a TMR system that uses identical software, a

fourth computer with diverse software is provided in case of a design error that

causes the correlated failure of the complete TMR system. Diversity is deployed in

a number of existing safety critical real-time systems, as in the Airbus fly-by-wire

system [Tra88], and in railway signaling [Kan95].

11.6 Design for Maintainability

The total cost of ownership of a product is not only the cost of the initial acquisition

of the product, but the sum of the acquisition cost, the cost of operation, the

expected maintenance cost over the product life, and finally, at the end of the

product lifetime, the cost of product disposal. Design for maintainability tries to

reduce the expected maintenance cost over the product lifetime. The cost of

maintenance, which can be higher than the cost of the initial acquisition of the

product, is strongly influenced by the product design and the maintenance strategy.

11.6.1 Cost of Maintenance

In order to be able to analyze the cost structure of a maintenance action, it is

necessary to distinguish between two types of maintenance actions: preventive
maintenance and on-call maintenance.

Preventive maintenance (sometimes also called scheduled or routine maintenance)
refers to a maintenance action that is scheduled to take place periodically at planned

intervals, when the plant or machine is intentionally shut down for maintenance.

Based on knowledge about the increasing failure rate of components and the results

of the analysis of the anomaly detection database (see Sect. 6.3), components that are

high level clusterreal-time
buses

lower level cluster with limited
functionality, implemented on
diverse hardware and diverse
software

controlled object

field bus

sensors and
actuators

Fig. 11.3 Multilevel computer system with diverse software
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expected to fail in the near future are identified and replaced during preventive

maintenance. An effective scheduled maintenance strategy needs extensive compo-

nent instrumentation to be able to continually observe component parameters and

learn about the imminent wear-out of components by statistical techniques.

On-call maintenance (sometimes also called reactive maintenance) refers to a

maintenance action that is started after a product has failed to provide its service. By

its nature it is unplanned. In addition to the direct repair cost, the on call-mainte-

nance costs comprise the cost of maintenance readiness (to ensure the immediate

availability of a repair team in case a failure occurs) and the cost of unavailability of
service during the interval starting with the failure occurrence until the repair action
has been completed. If an assembly line must be stopped during the unavailability-
of-service interval, the cost of unavailability of service can be substantially higher

than the initial product acquisition cost and the repair cost of the failed component.

Example: It is a goal of plant managers to reduce the probability for the need of on-called

maintenance action as far as possible, ideally to zero.

Example: In the airline industry, unscheduled maintenance of an airplane means lost

connections and extra cost for the lodging of passengers.

Another aspect that influences the cost of maintenance relates to the question

whether permanent hardware faults or software errors are considered. The repair

of a permanent hardware fault requires the physical replacement of the broken

component, i.e., the spare part must be available at the site of failure and must be

installed by a physical maintenance action. Given an appropriate infrastructure has

been set up, the repair of a software fault can be performed remotely by down-

loading a new version of the software via the Internet with minimal or without any

human intervention.

11.6.2 Maintenance Strategy

The design for maintenance starts with the specification of a maintenance strategy

for a product. The maintenance strategy will depend on the classification of
components, on the maintainability/reliability/cost tradeoff of the product, and

the expected use of the product.

Component Classification. Two classes of components must be distinguished from

the point of view of maintenance: components that exhibit wear-out failures and
components that exhibit spontaneous failures. For components that exhibit wear-

out failures, physical parameters must be identified that indicate the degree of

wear-out. These parameters must be continually monitored in order to periodically

establish the degree of wear-out and to determine whether a replacement of the

component must be considered during the next scheduled maintenance interval.

Example: Monitoring the temperature or the vibration of a bearing can produce valuable

information about the degree of wear-out of the bearing before it actually breaks down.
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In some manufacturing plants, more than 100,000 sensors are installed to monitor wear out

parameters of diverse physical components.

If it is not possible to identify a measureable wear-out parameter of a component or

to measure such a parameter, another conservative technique of maintenance is the

derating of components (i.e. operating the components in a domain where there is

minimal stress on the components), and the systematic replacement of components

after a given interval of deployment during a scheduled maintenance interval. This

technique is, however, quite expensive.

For components with a spontaneous failure characteristic, such as many elec-

tronic components, it is not possible to estimate the interval that contains the instant

of failure ahead of time. For these components the implementation of fault-toler-
ance, as discussed in Sect. 6.4, is the technique of choice to shift on-call mainte-

nance to preventive maintenance.

Maintainability/Reliability Tradeoff . This tradeoff determines the design of the

field-replaceable units (FRU) of a product. An FRU is a unit that can be replaced in

the field in case of failure. Ideally, an FRU consists of one or more FCUs (see Sect.

6.1.1) in order that effective diagnosis of an FRU failure can be performed. The size

(and cost) of an FRU (a spare part) is determined by a cost-analysis of a mainte-

nance action on one side and the impact of the FCU structure on the reliability of the

product on the other side. In order to reduce the time (and cost) of a repair action,

the mechanical interfaces around an FRU should be easy to connect and disconnect.

Mechanical interfaces that are easy to connect or disconnect (e.g., a plug) have a

substantially higher failure rate than interfaces that are firmly connected (e.g., a

solder connection). Thus, the introduction of FRU structure will normally decrease
the product reliability. The most reliable product is one that cannot be maintained.

Many consumer products fall into this category, since they are designed for optimal

reliability – if the product is broken, it must be replaced as whole by a new product.

Expected Use. The expected use of a product determines whether a failure of the

product will have serious consequences – such as the downtime of a large assembly

line. In such a scenario it makes economic sense to implement a fault-tolerant

electronic system that masks a spontaneous permanent failure of an electronic

device. At the next scheduled maintenance interval, the broken device can be

replaced, thus restoring the fault-tolerance capability. Hardware fault-tolerance

thus transforms the expensive on-call maintenance action to a lower-cost scheduled

maintenance action. The decreasing cost of electronic devices on one side and the

increasing labor cost and the cost of production loss during on-call maintenance on

the other side shift the break-even point for many electronic control systems towards

fault-tolerant systems.

In an ambient intelligence environment, where smart Internet-enabled devices

are placed in many homes, the maintenance strategy must ensure that non-experts

can replace broken parts. This requires an elaborate diagnostic subsystem that

diagnoses a fault to an FRU and orders the spare part autonomously via the Internet.

If the spare part is delivered to the user, the inexperienced user must be capable to
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replace the spare part with minimal effort in order to restore the fault-tolerance

of the system with minimum mental and physical effort.

Example: The maintenance strategy of the Apple iPhone relies on the complete replace-

ment of a broken hardware device, eliminating the need for setting up an elaborate

hardware maintenance organization. Software errors are corrected semi-automatically by

downloading a new version of the software from the Apple iTunes store.

11.6.3 Software Maintenance

The term software maintenance refers to all needed software activities to provide a

useful service in a changing and evolving environment. These activities include:

l Correction of software errors. It is difficult to deliver error-free software. If

dormant software errors are detected during operation in the field, the error must

be corrected and a new software version must be delivered to the customer.
l Elimination of vulnerabilities. If a system is connected to the Internet, there is a

high probability that any existing vulnerability will be detected by an intruder

and used to attack and damage a system that would otherwise provide a reliable

service.
l Adaptation to evolving specifications. A successful system changes its environ-

ment. The changed environment puts new demands on the system that must be

fulfilled in order to keep the system relevant for its users.
l Addition of new functions. Over time, new useful system functions will be

identified that should be included in a new version of the software.

The connection of an embedded system to the Internet is a mixed blessing. On one

side, it makes it possible to provide Internet related services and to download a new

version of the software remotely, but on the other side it enables an adversary to

exploit vulnerabilities of a system that would be irrelevant if no Internet connection

were provided.

Any embedded system that is connected to the Internet must support a secure
download service [Obm09]. This service is absolutely essential for the continued

remote maintenance of the software. The secure download must use strong crypto-

graphic methods to ensure that an adversary cannot get control of the connected

hardware device and download a software of its liking.

Example: A producer of modems sold 10,000 of modems all over the world before

hackers found out that the modems contained a vulnerability. The producer did not consider
to provide the infrastructure for a secure download service for installing a new corrected

version of the software remotely.

Points to Remember

l In his recent book [Bro10], Fred Brook states that conceptual integrity of a
design is the result of a single mind.
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l Constraints limit the design space and help the designer to avoid the exploration

of design alternatives that are unrealistic in the given environment. Constraints

are thus our friends, not our adversaries.
l Software per se is an action plan describing the operations of a real or virtual

machine. A plan by itself (without a machine) does not have any temporal
dimension, cannot have state and has no behavior. This is one of the reasons

why we consider the component and not the job as the primitive construct at the

level of architecture design of an embedded system.
l Purpose analysis, i.e., the analysis why a new system is needed and what is the

ultimate goal of a design must precede the requirements analysis.
l The analysis and understanding of a large problem is never complete and there

are always good arguments for asking more questions concerning the require-

ments before starting with the real design work. The paraphrase paralysis by
analysis has been coined to point out this danger.

l Model-based design is a design method that establishes a useful framework for

the development and integration of executable models of the controlled object

and of the controlling computer system.
l Component-based design is a meet-in-the middle design method. On the one

side, the functional and temporal requirements on the components are derived

top-down from the desired application functions. On the other side, the func-
tional and temporal capabilities of the components are contained in the speci-

fications of the available components.
l Safety can be defined as the probability that a system will survive a given time-

span without the occurrence of a critical failure mode that can lead to cata-
strophic consequences.

l Damage is a pecuniary measure for the loss in an accident, e.g., death, illness,

injury, loss of property, or environmental harm. Undesirable conditions that

have the potential to cause or contribute to an accident are called hazards. A
hazard is thus a dangerous state that can lead to an accident, given certain

environmental triggering conditions.
l Hazards have a severity and a probability. The severity is related to the worst

potential damage that can result from the accident associated with the hazard.

The severity of hazards is often classified in a severity class. The product of

hazard severity and hazard probability is called risk.
l The goal of safety analysis and safety engineering is to identify hazards and to

propose measures that eliminate or at least reduce the hazard or reduce the

probability of a hazard turning into a catastrophe, i.e., to minimize the risk.
l A safety case is a combination of a sound set of well-documented arguments

supported by analytical and experimental evidence concerning the safety of a

given design. The safety case must convince an independent certification author-

ity that the system under consideration is safe to deploy.
l It is a goal of plant managers to reduce the probability for the need of on-called

maintenance action as far as possible, ideally to zero.
l The connection of an embedded system to the Internet is a mixed blessing. On

one side, it makes it possible to provide Internet related services and to download
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a new version of the software remotely, but on the other side, it enables an

adversary to exploit vulnerabilities of a system that would be irrelevant if no

Internet connection were provided.
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Review Questions and Problems

11.1 Discuss the advantages and disadvantages of grand design versus incremen-
tal development.

11.2 Which are the characteristics of a “wicked” problem?

11.3 Why is the notion of a component, a hardware/software unit, introduced as

the basic building block of a system? What are the problems with the notion

of a software component in the context of real-time system design?

11.4 Discuss the different types of constraints that restrict a design. Why is it

important to explore these constraints before starting a design project?

11.5 Model-based design and component-based design are two different design

strategies. What are the differences?

11.6 What are the concepts behind UML MARTE and AADL?

11.7 Which are the results of the architecture design phase?

11.8 Establish a checklist for the evaluation of a design from the point of view of

functional coherence, testability, dependability, energy and power, and

physical installation.
11.9 What is a safety case? Which is the preferred evidence in a safety case?

11.10 Explain the safety-analysis techniques of Fault Tree Analysis and Failure

Mode and Effect Analysis!

11.11 What is the key idea behind the safety standard IEC 6105?

11.12 What is a SIL?

11.13 What are the advantages and disadvantages of design diversity?

11.14 Discuss the reliability/maintainability tradeoff!

11.15 Why do we need to maintain software?

11.16 Why is a secure download service essential if an embedded system is

connected to the Internet?
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Chapter 12

Validation

Overview This chapter deals with assessment technologies. These technologies

must convince a designer, user, or a certification authority that the developed

computer system is safe to deploy and will fulfill its intended function in the

planned real-world environment. In Sect. 12.1 we elaborate on the differences

between validation and verification. Validation deals with the consistency between

the informal model of the user’s intention and the behavior of the system-under-test
(SUT ), while verification deals with the consistency between a given ( formal)
specification and the SUT. The missing link between validation and verification

are errors in the specification. The following section deals with the challenges of

testing, the preferred validation technique. At the core of testing are the interfer-

ence-free observability of results and the controllability of the inputs. The design

for testability provides a framework that supports these characteristics. In most

cases, only a tiny fraction of the input space can be examined by test cases.

The proper selection of test cases should justify the assumption that, given the

results of the test cases are correct, the systemwill operate correctly all over the input

domain. In digital systems the validity of such an induction is doubtful, since digital

inputs are not continuous but discrete – a single bit-flip can make a correct result

erroneous. The decisionwhether the result of a test input is correct is delegated to a test
oracle. The automation of test oracles is another challenge in the domain of testing.

Model-based design, where a model of the plant and a model of the computer

controller are interconnected to study the performance of closed-loop control systems

is a promising route towards the automation of the test oracle. Given that a complete

formal model of a design is available, formal methods can be deployed to check

whether selected properties hold in all possible states of the model. In the last few

years, the technique of model checking has matured such that it can handle systems of

industrial size. The correct operation of the fault-masking mechanisms of a fault-

tolerant system can only be assessed if the input space is extended to include the faults

the system is supposed to tolerate. In the last section, the topics of physical fault-

injection and software-based fault injection are covered. Since any physical sensor or

actuator will eventually fail, fault-injection campaigns must establish the safe opera-

tion of a system even in the case that any particular sensor or actuator has failed.

H. Kopetz, Real-Time Systems: Design Principles for Distributed Embedded Applications,
Real-Time Systems Series, DOI 10.1007/978-1-4419-8237-7_12,
# Springer Science+Business Media, LLC 2011
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12.1 Validation Versus Verification

An essential fraction – up to 50% – of the development costs of a real-time

computer system is devoted to ensure that the system is fit-for-purpose. In safety-

critical applications that must be certified, this fraction is even higher.

When developing an embedded computer system, it is useful to distinguish

between three different types of system representations [Gau05]:

1. The informal model of the user’s intention that determines the role of the

embedded computer system in the given real-world application context.

In the embedded world, this model deals with the relationships of the computer

inputs and outputs to the effects in the physical environment. This model is

usually not fully documented and informal, since in most cases it is not possible

to think about and formalize all system aspects that are relevant in a real-world

scenario.

2. The model of the system specification which captures and documents, either in

natural language or in some formal notation, the intentions of the client and the

obligations of the system developers as understood by the person or the group of

persons who develop the (formal) specification.

3. The system under test (SUT) (the result of the system development) that should

perform the system functions according to the model of the user’s intention.

Verification establishes the consistency between a ( formal ) system specification
and the SUT, while validation is concerned with the consistency between the model
of the user’s intention and the SUT. The missing link between verification and

validation is the relation between the (informal) model of the user’s intention and

the ( formal) specification of the system. We call errors that occur in this phase of

development specification errors, while we call errors that occur during the transfor-
mation of a given specification to the SUT implementation errors. While verification
can, in theory, be reduced to a formal process, validation must examine the system’s

behavior in the real world. If properties of a system have been formally verified,

it still has not been established whether the existing formal specification captures all

aspects of the intended behavior in the user’s environment, i.e., if it is free of

specification errors. Sometimes the term specification testing is used to find out

whether the specification is consistent with themodel of the user’s intentions [Gau05].

Validation, specification testing, and verification are thus three complementary

means to support quality assurance. The prime validation method is testing, while
the prime verification method is formal analysis.

During testing, the behavior of a real-time computer system is exercised at

carefully selected points of the input domain and the corresponding results in the

domains of value and time are classified as correct or erroneous. It is assumed,

given that the test cases have been properly selected and correctly executed, that the

induction that the program will operate correctly at all points of the enormous input

space is justified. In a digital system, where the change of a single bit can have

drastic consequences on the behavior, this induction is fragile. If we take a purely
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probabilistic point of view, an estimate that the mean time to failure (MTTF) of the

SUT will be larger than a given number of hours can only be made if operational

tests have been executed for a duration that corresponds to this number of hours
[Lit93]. In practice, this means that it is not possible to establish an MTTF of more

than 103–105 h by operational testing. This is orders of magnitude lower than the

desired MTTF of safety-critical systems, which is in the order of 109 h.

The main shortcoming of formal methods is the missing link between the

informal model of the user’s intention and the formal specification that is the

reference for assessing the correctness of the system. Furthermore, only a subset

of the properties relevant for the system operation can be captured in formal
properties that are examined during the formal analysis.

12.2 Testing Challenges

Observability of the outputs of the SUT and controllability of the test inputs are the
core of any testing activity.

In non-real-time systems, the observability and controllability are provided by

test- and debug monitors that halt the program flow at a test point and give the tester

the opportunity to monitor and change program variables. In distributed real-time

systems, such a procedure is not suitable for the following two reasons:

1. The temporal delay introduced at the test points modifies the temporal behavior

of the system in such a manner that existing errors can be hidden and new errors

can be introduced. This phenomenon is called the probe effect. Probe effects

have to be avoided when testing real-time systems.

2. In a distributed system, there are many loci of control. The halting of one control
path introduces a temporal distortion in the coordinated control flow that can

lead to new errors.

12.2.1 Design for Testability

By design for testability, we mean the design of a framework and the provision of

mechanisms that facilitate the testing of a system. The following techniques

improve the testability:

1. Partitioning the system into composable subsystems with observable and in the

domains of value and time well-specified interfaces. It is then possible to test

each subsystem in isolation and to limit the integration effects to the testing of

the emerging behavior. Probe-effect free observability of subsystem outputs at

any level of the architecture was one of the motivations to provide multicasting

in the basic message transport service (see Sect. 4.3) of the time-triggered

architecture.
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2. Establishment of a static temporal control structure such that the temporal

control structure is independent of the input data. It is then possible to test the

temporal control structure in isolation.

3. Reducing the temporal dimension of the input space by introducing a sparse

time-base of proper granularity. The granularity of this time-base should be

sufficient for the application at hand but should not be any smaller. The smaller

the granularity of the sparse time-base, the larger the potential input space in the

temporal domain. By decreasing the size of the input space or by increasing

the number of non-redundant test cases the test coverage, i.e., the fraction of the

total input space that is covered by the tests, can be improved.

4. Publication of the ground state of a node in a g-state message at the periodic

reintegration point. The ground state can then be observed by an independent

component without probe effect.

5. Provision of determinism in the software such that the same output messages

will be produced if the same input messages are applied to a component.

Because of their deterministic properties and their static control structure, time-

triggered systems are easier to test than event-triggered systems.

12.2.2 Test Data Selection

During the test phase, only a tiny fraction of the potential input space of a computer

system can be exercised. The challenge for the tester is to find an effective and

representative test-data set that will give the designer confidence that the system

will work correctly for all inputs. In this section, we present some methods for test

data selection:

Random Test Data Selection. Test data are selected randomly without any consid-

eration of the program structure or the operational profile of use.

Requirements Coverage. In this method, the requirements specification is the

starting point for selecting the test data. For each one of the given requirements, a

set of test cases is designed to check whether the requirement is satisfied. The

hidden assumption in this criterion is that the set of requirements is complete.

White-box Testing. The internal structure of a system is examined to derive a set of

test data such that some kind of coverage criterion is satisfied, e.g., that all

statements have been executed or that all branches of a program have been tested.

This test data selection criterion is most effective for unit testing, where the

internals of the component implementation are available.

Model-based Test Data Selection: The test data is derived from a model of the

system under test and a model of the physical plant. Model-based test data selection

can be automated, since the correctness of test results can be related to a perfor-

mance criterion of the physical process.
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Example: Consider the case where a controller of an automotive engine is tested versus a

model of this engine. The model of the engine has been extensively validated with respect to

the operation of the real engine and is assumed to be correct. The control algorithms that are

implemented in the controller determine the performance parameters of the engine such

as energy efficiency, torque, pollution, etc. By observing the performance parameters of

the engine we can detect anomalies that are caused by a misbehavior of the controller

software.

Operational profile. The basis of the test data selection is the operational profile of

the system under test in the given application context. This test data selection

criterion misses rare events.

Peak load. A hard real-time system must provide the specified timely service under

all conditions covered by the load- and fault-hypothesis, i.e., also under peak loads

that are caused by rare events. The peak-load scenario puts extreme stress on the

system and should be tested extensively. The behavior of the system in above-peak-

load situations must also be tested. If peak load activity is handled correctly, the
normal load case will take care of itself. In most cases it is not possible to generate

rare events and peak load in the real-world operational environment. Therefore

peak-load testing is best performed in a model-based test environment.

Worst-Case Execution Time (WCET). To determine the WCET of a task experi-

mentally, the task source code can be analyzed to generate a test data set that is

biased towards the worst-case execution time.

Fault-Tolerance Mechanisms. Testing the correctness of the fault-tolerance mech-

anism is difficult, because faults are not part of the normal input domain. Mechan-

isms must be provided that can activate the faults during the test phase. For

example, software- or hardware-implemented fault injection can be used to test

the correctness of the fault-tolerance mechanisms (see Sect. 12.5).

Cyclic systems. If a system has a cyclic behavior (many control systems are cyclic),

the crossing of a particular phase of the cycle is a repetitive event in the temporal

domain. In many cyclic systems it is sufficient to test all events that occur in a single

cycle.

The above list of test data selection criteria is not complete. A survey study on

the effectiveness of different test data selection criteria is contained in Juristo et al.

[Jur04]. Selecting the test data by using a combination of the above criteria seems to

be more effective than relying on a single criterion in isolation.

In order to be able to judge the quality of a test-data set, different coverage
measures have been introduced. A coverage measure describes the degree to which
a test data set exercises the SUT. Common coverage criteria are:

1. Function coverage – has every function been exercised?

2. Statement coverage – has every statement of the source code been executed?

3. Branch coverage – has every branch instruction been executed in all directions?

4. Condition coverage – has every Boolean condition been fully exercised?

5. Fault coverage – have the fault-tolerant mechanisms been tested for every fault

that is contained in the fault hypothesis?
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12.2.3 Test Oracle

Given that a set of test cases has been selected, a method must be provided to

determine whether the result of a test case produced by the SUT is acceptable or

not. In the literature, the term test oracle is used to refer to such a method. The

design of an algorithmic test oracle is a prerequisite of any test automation, which

is needed for reducing the cost of testing.

In practice, the judgmentwhether the result of a test case is in conformancewith a natural

language representation of the model of the user’s intention is often delegated to a human.
Model-based design andmodel-based testing can help to partially solve the problem.

The structured design process, discussed in Sect. 11.2, distinguishes between the

PIM (Platform-Independent-Model) and the PSM (Platform-Specific Model) of a

component. An executable representation of the complete interface behavior (in the

domains of value and time) at the PIM level of a design can act as the reference for

the adjudication of a test result at the PSM level and thus help to detect implementa-
tion errors. The oracle challenge is thus shifted from the PSM level to the PIM level.

Since the PIM is developed in an early phase of the design, errors can be captured

early in the lifecycle, which reduces the cost associated with correction of the errors.

The LIF specification of a component (see Sect. 4.4.2) should contain input
assertions and output assertions. Input assertions limit the input space of the

component and exclude input data that the component is not designed to handle.

Output assertions help to immediately detect errors that occur inside a component.

Both input assertions and output assertions can be considered to act as a test-oracle
light [Bar01]. Since the PIM is not resource constrained, the wide use of input

assertions and output assertions at the PIM level can help to debug the PIM specifi-

cation. In the second phase, when the PIM is transformed to the PSM, some of these

assertions can be removed to arrive at an efficient code for the target machine.

In a time-triggered system, where the temporal control structure is static, the

detection of temporal errors in the execution of a program at the PSM level is

straightforward and can be automated.

12.2.4 System Evolution

Most successful systems evolve over time. Existing deficiencies are corrected and

new functions are introduced in new versions of the system. The validation of these

new versions must be concerned with two issues:

1. Regression testing. Checking that the functionality of the previous version (that
must be supported in the new version) has not been modified and is still correct.

2. New-function testing. Checking that the functionality that is new to the latest

version is implemented correctly.

Regression testing can be automated by executing the test-data set of the previous

version on the new version. The anomalies that have been detected in the old
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version (see Sect. 6.3) can be the source of new test cases that put extraordinary

stress on the system. Bertolino [Ber07] lists six questions that have to be addressed

when designing a specific test campaign:

1. WHY do we perform the test? Is the objective of the test campaign to find

residual design errors, to establish the reliability of a product before it can be

released or to find out whether the system has a usable man–machine interface?

2. HOW to choose the test cases? There are different options to choose the test

cases: random, guided by the operational profile, looking at a specific demand on

the system (e.g., a shut down scenario of a nuclear reactor), or based on

knowledge about the internal structure of the program (see Sect. 12.2.2).

3. HOW MUCH testing is sufficient? The decision about how many test cases

must be executed can be derived from coverage analysis or from reliability

considerations.

4. WHAT is it that we execute? What is the system under test – a module, the

system in a simulated environment or the system in its real-world target envi-

ronment?

5. WHERE do we perform the observation? This depends on the structure of the

system and the possibility to observe the behavior of subsystems without

disturbing the system operation.

6. WHEN is it in the product lifecycle that we perform the test? In the early phases of

the lifecycle, testing can only be performed in an artificial laboratory environ-

ment. The real test comes when the system is exercised in its target environment.

12.3 Testing of Component-Based Systems

The component-based design of embedded applications, which is the focus of this

book, requires appropriate strategies for the validation of component-based systems.

A component is a hardware/software unit that encapsulates and hides its design and

makes its services available at the message-based LIF (linking interface) of the

component. While the component provider has knowledge about the internals of a

component and can use this knowledge to arrive at effective test cases, the compo-

nent user sees a component as a black box and must use and test the component on

the basis of the given interface specification.

12.3.1 Component Provider

A component provider sees a component independent from the context of use.

The provider must be concerned with the correct operation of the component in all

possible user scenarios. In our component model, the user scenarios can be para-

meterized via the Technology Independent Interface (TII, see Sect. 4.4.3). The

component provider must test the proper functioning of the component in the full
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parameter space supported by the TII. The component provider has access to the

source code and can monitor the internal execution within the component across

the Technology Dependent Interface (see Sect. 4.4.4), which is normally not utilized

by the component user.

12.3.2 Component User

The component user is concerned with the performance of the component in its

concrete context of use that is defined by a concrete parameter setting of the

component for the given application. The component user can assume that the

provider has tested the functions of the component as specified by the interface

model and will put the focus of testing on the effects of component integration and

the emerging behavior of a set of components, which is outside the scope of testing

of the component provider.

In a first step, a component user must validate that the prior properties of the
component, i.e., the properties that the component supplier has tested in isolation,

are not refuted by the integration of the component. The component integration

framework plays an important role in this phase.

In an event-triggered system, queues must be provided at the entry and exit of a

component to align the component performance with the pending user requests, with

the user’s capability to absorb the results in a timely manner and with the transport

capabilities of the communication system. Since every queue has a potential for

overflow, flow-control mechanisms are needed across component boundaries. In the

test phase the reaction of the component to queue overflow must be examined.

The integration of components can give rise to planned or unanticipated emer-

gent behavior that is caused by the component interactions. Emergent behavior is
that which cannot be predicted through analysis at any level simpler than that of the
system as a whole [Dys98, p. 9]. This definition of emergent behavior makes it clear

that the detection and handling of emergent behavior is in the realm of a component

user and not of the component supplier. Mogul [Mog06] lists many examples of

emergent behavior in computer systems that are caused by the interaction of

components. The appearance of emergent behavior is not well-understood and a

subject of current research (see also Sect. 2.4).

12.3.3 Communicating Components

During system integration, commercial-off-the-shelf (COTS) components or

application-specific components are connected by their corresponding linking

interfaces (LIFs). The message-exchange across these linking interfaces must be

carefully tested. In Sect. 4.6 we have introduced three levels of a LIF specification:

the transport level, the operational level and the semantic level. The LIF tests can

follow along these three levels. The test at the transport level and the operational
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level, which must be precisely specified, can be performed mechanically, while the

test of the meta-level (the semantics) will normally need human intervention. The

multi-cast capability of the BMTS (basic message transport service) – see Sect. 6.1)

enables the probe-effect-free observation of the information exchanged among

communicating components.

In model-based design (Sect. 11.3.1), executable models of the behavior of the

physical plant and of the control algorithms for the computer system are developed

in parallel. At the PIM level these models, embodied in components, can be linked

in a simulation environment such that the interaction of these components can be

observed and studied. In a control system, the performance (quality of control) of

the closed loop system can be monitored and used to find the optimal control

parameter setting. The simulation will normally operate on a different time-scale

than the target system. In order to improve the faithfulness of the simulation with

respect to the target system, the phase relationships of the messages exchanged

between the PIM components of the plant and of the controller should be the same

as the phase relationships in the final implementation, the PSM. This constant phase

relationship will avoid many subtle design errors caused by an uncontrolled and

unintended phase relationship among messages [Per10].

12.4 Formal Methods

By the term formal methods we mean the use of mathematical and logical techni-

ques to express, investigate, and analyze the specification, design, documentation,

and behavior of computer hardware and software. In highly ambitious projects,

formal methods are applied to prove formally that a piece of software implements

the specification correctly. John Rushby [Rus93, p. 87] summarizes the benefits of

formal methods as follows:

Formal methods can provide important evidence for consideration in certification, but they

can no more “prove” that an artifact of significant logical complexity is fit for its purpose

than a finite-element calculation can “prove” that a wing span will do its job. Certification

must consider multiple sources of evidence, and ultimately rests on informed engineering

judgment and experience.

12.4.1 Formal Methods in the Real World

Any formal investigation of a real-world phenomenon requires the following steps

to be taken:

1. Conceptual model building. This important informal first step leads to a precise

natural language representation of the real-world phenomenon that is the subject

of investigation.

2. Model formalization. In this second step, the natural language representation of

the problem is transformed, and expressed in a formal specification language
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with precise syntax and semantics. All assumptions, omissions, or misconcep-

tions that are introduced in this step will remain in the model, and limit the

validity of the conclusions derived from the model. Different degrees of rigor

can be distinguished.

3. Analysis of the formal model. In the third step, the problem is formally analyzed.

In computer systems, the analysis methods are based on discrete mathematics

and logic. In other engineering disciplines, the analysis methods are based on

different branches of mathematics, e.g., the use of differential equations to

analyze a control problem.

4. Interpretation of the results. In the final step, the results of the analysis must be

interpreted and applied to the real world.

Only step (3) out of these four steps can be fully mechanized. Steps (1), (2), and (4)

will always require human involvement and human intuition and are thus as fallible

as any other human activity.

An ideal and complete verification environment takes the specification,
expressed in a formally defined specification language, the implementation, written
in a formally defined implementation language, and the parameters of the execution
environment as inputs, and establishes mechanically the consistency between spec-

ification and implementation. In a second step, it must be ensured that all assump-

tions and architectural mechanisms of the target machine (e.g., the properties and

timing of the instruction set of the hardware) are consistent with the model of

computation that is defined by the implementation language. Finally, the correct-

ness of the verification environment itself must be established.

12.4.2 Classification of Formal Methods

Rushby [Rus93] classifies the use of formal methods in computer science according

to the increasing rigor into the following three levels:

1. Use of concepts and notation of discrete mathematics. At this level, the some-

times ambiguous natural language statements about requirements and specifica-

tion of a system are replaced by the symbols and conventions of discrete

mathematics and logic, e.g., set theory, relations, and functions. The reasoning

about the completeness and consistency of the specification follows a semi-

formal manual style, as it is performed in many branches of mathematics.

2. Use of formalized specification languages with some mechanical support tools.

At this level, a formal specification language with a fixed syntax is introduced

that allows the mechanical analysis of some properties of the problems

expressed in the specification language. At level (2), it is not possible to generate

complete proofs mechanically.

3. Use of fully formalized specification languages with comprehensive support

environments, including mechanized theorem proving or proof checking.
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At this level, a precisely defined specification language with a direct interpre-

tation in logic is supplied, and a set of support tools is provided to allow the

mechanical analysis of specifications expressed in the formal specification

language.

12.4.3 Benefits of Formal Methods

Level (1) methods. The compact mathematical notation introduced at this level

forces the designer to clearly state the requirements and assumptions without

the ambiguity of natural language. Since familiarity with the basic notions of set

theory and logic is part of an engineering education, the disciplined use of level

(1) methods will improve the communication within a project team and within an

engineering organization and enrich the quality of documentation. Since most of

the serious faults are introduced early in the lifecycle, the benefits of the level

(1) methods are most pronounced at the early phases of requirements capture and

architecture design. Rushby [Rus93, p. 39] sees the following benefits in using level

(1) methods early in the lifecycle:

l The need for effective and precise communication between the software engi-

neer and the engineers from other disciplines is greatest at an early stage, when

the interdependencies between the mechanical control system and the computer

system are specified.
l The familiar concepts of discrete mathematics (e.g., set, relation) provide a

repertoire of mental building blocks that are precise, yet abstract. The use of a

precise notation at the early stages of the project helps to avoid ambiguities and

misunderstandings.
l Some simple mechanical analysis of the specification can lead to the detection of

inconsistencies and omission faults, e.g., that symbols have not been defined or

variables have not been initialized.
l The reviews at the early stages of the lifecycle are more effective if the require-

ments are expressed in a precise notation than if ambiguous natural language is

used.
l The difficulty to express vague ideas and immature concepts in a semiformal

notation helps to reveal problem domains that need further investigation.

Level (2) methods. Level (2) methods are a mixed blessing. They introduce a rigid

formalism that is cumbersome to use, without offering the benefit of mechanical

proof generation. Many of the specification languages that focus on the formal

reasoning about the temporal properties of real-time programs are based at this

level. Level (2) formal methods are an important intermediate step on the way to

provide a fully automated verification environment. They are interesting from the

point of view of research.

Level (3) methods. The full benefits of formal methods are only realized at

this level. However, the available systems for verification are not complete in
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the sense that they cover the entire system from the high level specification to the

hardware architecture. They introduce an intermediate level of abstraction that is

above the functionality of the hardware. Nevertheless, the use of such a system for

the rigorous analysis of some critical functions of a distributed real-time system,

e.g., the correctness of the clock synchronization, can uncover subtle design faults

and lead to valuable insights.

12.4.4 Model Checking

In the last few years, the verification technique of model checking, a level (3)

method, has matured to the point that it can be used for the analysis and the support

of the certification of safety-critical designs [Cla03]. Given a formal behavioral

model of the specification and a formal property that must be satisfied, the model
checker checks automatically whether the property holds in all states of the system

model. In case the model checker finds a violation, it generates a concrete counter

example. The main problem in model checking is the state explosion. In the last few

years, clever formal analysis techniques have been developed to get a handle on the

state explosion problem such that systems of industrial size can be verified by

model checking.

12.5 Fault Injection

Fault injection is the intentional introduction of faults by software or hardware

techniques in order to validate the system behavior under fault conditions. During a

fault-injection experiment, the target system is exposed to two types of inputs: the

injected faults and the input data. The faults can be seen as another type of input
that activates the fault-management mechanisms. Careful testing and debugging of

the fault-management mechanisms are necessary because a notable number of

system failures is caused by errors in the fault-management mechanisms.

Fault injection serves two purposes during the evaluation of a dependable

system:

1. Testing and Debugging. During normal operation, faults are rare events that

occur only infrequently. Because a fault-tolerance mechanism requires the

occurrence of a fault for its activation, it is very cumbersome to test and

debug the operation of the fault-tolerance mechanisms without artificial fault

injection.

2. Dependability Forecasting. This is used to get experimental data about the likely

dependability of a fault-tolerant system. For this second purpose, the types and

distribution of the expected faults in the envisioned operational environment

must be known.
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Table 12.1 compares these two different purposes of fault injection.

It is possible to inject faults into the state of the computation (software-
implemented fault injection) or at the physical level of the hardware (physical fault
injection).

12.5.1 Software-Implemented Fault Injection

In software-implemented fault injection, errors are seeded into the memory of the

computer by a fault-injection software tool. These seeded errors mimic the effects of

hardware faults or design faults in the software. The errors can be seeded either

randomly or according to some preset strategy to activate specific fault-handling tasks.

Software implemented fault injection has a number of potential advantages over

physical fault injection:

1. Predictability: The space (memory cell) where and the instant when a fault is

injected is fixed by the fault-injection tool. It is possible to reproduce every

injected fault in the value domain and in the temporal domain.

2. Reachability: It is possible to reach the inner registers of large VLSI chips. Pin-

level fault injection is limited to the external pins of a chip.

3. Less effort than physical fault injection: The experiments can be carried out with

software tools without any need to modify the hardware.

12.5.2 Physical Fault Injection

During physical fault-injection, the target hardware is subjected to adverse physical

phenomena that interfere with the correct operation of the computer hardware. In

the following section, we describe a set of hardware fault-injections experiments

that have been carried out on the MARS (Maintainable Real-time System) archi-

tecture in the context of the ESPRIT Research Project Predictably Dependable
Computing Systems (PDCS) [Kar95,Arl03].

Table 12.1 Fault injection for testing and debugging versus dependability forecasting [Avr92]

Testing and debugging Dependability forecasting

Injected faults Faults derived from the specified fault

hypothesis

Faults expected in the operational

environment

Input data Targeted input data to activate the injected

faults

Input data taken from the operational

environment

Results Information about the operation and

effectiveness of the fault-tolerance

mechanisms

Information about the envisioned

dependability of the fault-tolerant

system
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The objective of the MARS fault-injection experiments was to determine

the error-detection coverage of the MARS nodes experimentally. Two replica-

determinate nodes receive identical inputs and should produce the same result.

One of the nodes is subjected to fault-injections (the FI-node), the other node serves
as a reference node (a golden node). As long as the consequences of the faults are

detected within the FI-node, and the FI-node turns itself off, or the FI-node produces

a detectably incorrect result message, the error has been classified as detected. If the

FI-node produces a result message different from the result message of the golden

node without any error indication, a fail-silence violation has been observed.

Three different fault-injection techniques were chosen at three different sites

(see Table 12.2). At Chalmers University in Goeteborg, the CPU chip was bom-

barded with a particles until the system failed. At LAAS in Toulouse, the system

was subjected to pin-level fault-injection, forcing an equi-potential line on the

board into a defined state at a precise moment of time. At the Technische Uni-

versit€at Wien, the whole board was subjected to Electromagnetic Interference

(EMI) radiation according to the IEC standard IEC 801-4.

Many different test runs, each one consisting of 2,000–10,000 experiments, were

carried out with differing combinations of error detection techniques enabled.

The results of the experiments can be summarized as follows:

1. With all error detection mechanisms enabled, no fail-silence violation was

observed in any of the experiments.

2. The end-to-end error detection mechanisms and the double execution of tasks

were needed in experiments with every one of the three fault-injection methods

if error-detection coverage of >99% must be achieved.

3. In the experiment that used heavy-ion radiation, a triple execution was needed to

eliminate all coverage violations. The triple execution consisted of a test-run

with known outputs between the two replicated executions of the application

task. This intermediate test run was not needed in the EMI experiments and the

pin-level fault injection.

4. The bus guardian unit was needed in all three experiments if a coverage of

>99% must be achieved. It eliminated the most critical failure of a node, the

babbling idiots.

A detailed description of the MARS fault injection experiments and a compari-

son with software-fault injection carried out on the same system is contained in

Arlat et al. [Arl03].

Table 12.2 Characteristics of different physical fault-injection techniques

Fault injection technique Heavy-ion Pin-level EMI

Controllability, space Low High Low

Controllability, time None High/medium Low

Flexibility Low Medium High

Reproducibility Medium High Low

Physical reachability High Medium Medium

Timing measurement Medium High Low
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12.5.3 Sensor and Actuator Failures

The sensors and actuators, placed at the interface between the physical world and

cyberspace, are physical devices that will eventually fail, just like any other physical
device. The failures of sensors and actuators are normally not spontaneous crash
failures, but manifest themselves either as transient malfunctions or a gradual drift

away from the correct operation, often correlated with extreme physical conditions

(e.g., temperature, vibration). An undetected sensor failure produces erroneous

inputs to the computational tasks that, as a consequence, will lead to erroneous

outputs that can be safety-relevant. Therefore it is state-of-the-art that any industrial-

strength embedded system must have the capability to detect or mask the failure of

any one of its sensors and actuators. This capability must be tested by fault-injection

experiments, either software-based or physical.

An actuator is intended to transform a digital signal, generated in cyberspace, to

some physical action in the environment. The incorrect operation of an actuator can

only be observed and detected if one ormore sensors observe the intended effect in the

physical environment. This error-detection capability with respect to actuator failures

must also be tested by fault-injection experiments (see also the example in Sect. 6.1.2).

In safety-critical applications, these fault-injection tests must be carefully docu-

mented, since they form a part of the safety case.

Points to Remember

l An essential fraction – up to 50% – of the development costs of a real-time

computer system is devoted to ensure that the system is fit-for-purpose. In
safety-critical applications that must be certified, this fraction is even higher.

l Verification establishes the consistency between a (formal) specification with

the system under test (SUT), while validation is concerned with the consistency

between the model of the user’s intention with the SUT. The missing link

between verification and validation is the relation between the model of the

user’s intention and the (formal) specification of the system.
l If a purely probabilistic point of view is taken, then an estimate that the mean

time to failure (MTTF) of the SUT will be larger than a given number of hours

can only be made if system tests have been executed for a duration that is larger

than this number of hours.
l The modification of the behavior of the object under test by introducing a test

probe is called the probe effect.
l Design for testability establishes a framework where test-outputs can be

observed without a probe effect and where test inputs can be controlled at any

level of the system architecture.
l It is a challenge for the tester to find an effective and representative set of test-data

that will give the designer confidence that the system will work correctly for all

inputs. A further challenge relates to finding an effective automatable test oracle.
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l In the last few years clever formal techniques have been developed to get a

handle on the state explosion problem such that systems of industrial size can be

verified by model checking.
l Fault injection is the intentional activation of faults by hardware or software

means to be able to observe the system operation under fault conditions. During

a fault-injection experiment the target system is exposed to two types of inputs:

the injected faults and the input data.
l The sensors and actuators, placed at the interface between the physical world and

cyberspace, are physical devices that will eventually fail, just like any other

physical device. Therefore it is state-of-the-art that any industrial-strength

embedded system must have the capability to detect or mask the failure of any

one of its sensors and actuators.
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Review Questions and Problems

12.1 What is the difference between validation and verification?

12.2 Describe the different methods for test-data selection.

12.3 What is a test oracle?

12.4 How does a component provider and component user test a component based

system?

12.5 Discuss the different steps that must be taken to investigate a real-world

phenomenon by a formal method. Which one of these steps can be forma-

lized, which cannot?

12.6 In Sect. 12.4.2, three different levels of formal methods have been intro-

duced. Explain each one of these levels and discuss the costs and benefits of

applying formal methods at each one of these levels.

12.7 What is model checking?

12.8 What is the “probe effect”?

12.9 How can the “testability” of a design be improved?

12.10 What is the role of testing during the certification of a ultra-dependable

system?

12.11 Which are the purposes of fault-injection experiments?

12.12 Compare the characteristics of hardware and software fault-injection

methods.
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Chapter 13

Internet of Things

Overview The connection of physical things to the Internet makes it possible to

access remote sensor data and to control the physical world from a distance. The

mash-up of captured data with data retrieved from other sources, e.g., with data that

is contained in the Web, gives rise to new synergistic services that go beyond the

services that can be provided by an isolated embedded system. The Internet of
Things is based on this vision. A smart object, which is the building block of the

Internet of Things, is just another name for an embedded system that is connected to

the Internet. There is another technology that points in the same direction – the

RFID technology. The RFID technology, an extension of the ubiquitous optical bar

codes that are found on many every-day products, requires the attachment of a

smart low-cost electronic ID-tag to a product such that the identity of a product can

be decoded from a distance. By putting more intelligence into the ID tag, the tagged
thing becomes a smart object. The novelty of the Internet-of-Things (IoT) is not in

any new disruptive technology, but in the pervasive deployment of smart objects.
At the beginning of this chapter, the vision of the IoT is introduced. The next

section elaborates on the forces that drive the development of the IoT. We distin-

guish between technology push and technology pull forces. The technology push
forces see in the IoT the possibility of vast new markets for novel ICT products and

services, while the technology pull forces see the potential of the IoT to increase the

productivity in many sectors of the economy, to provide new services, e.g., for an

aging society, and to promote a new lifestyle. Section 13.3 focuses on the technology

issues that have to be addressed in order to bring the IoT to a mass market.

Section 13.4 discusses the RFID technology, which can be seen as a forerunner of

the IoT. The topic of wireless sensor networks, where self-organizing smart objects
build ad-hoc networks and collect data from the environment, is covered in

Sect. 13.5. The pervasive deployment of smart objects that collect data and control

the physical environment from a distance poses a severe challenge to the security

and safety of the world and the privacy of our lives.

H. Kopetz, Real-Time Systems: Design Principles for Distributed Embedded Applications,
Real-Time Systems Series, DOI 10.1007/978-1-4419-8237-7_13,
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13.1 The Vision of an Internet-of-Things

Over the past 50 years, the Internet has exponentially grown from a small research

network, comprising only a few nodes, to a worldwide pervasive network that

services more than a billion users. The further miniaturization and cost reduction

of electronic devices makes it possible to expand the Internet into a new dimension:

to smart objects, i.e., everyday physical things that are enhanced by a small

electronic device to provide local intelligence and connectivity to the cyberspace

established by the Internet. The small electronic device, a computational compo-
nent that is attached to a physical thing, bridges the gap between the physical world
and the information world. A smart object is thus a cyber-physical system or an

embedded system, consisting of a thing (the physical entity) and a component (the
computer) that processes the sensor data and supports a wireless communication

link to the Internet.

Example: Consider a smart refrigerator that keeps track of the availability and expiry date
of food items and autonomously places an order to the next grocery shop if the supply of a

food item is below a given limit.

The novelty of the IoT is not in the functional capability of a smart object –
already today many embedded systems are connected to the Internet – but in the

expected size of billions or even trillions of smart objects that bring about novel

technical and societal issues that are related to size. Some examples of these

issues are: authentic identification of a smart object, autonomic management and

self-organization of networks of smart objects, diagnostics and maintenance,

context awareness and goal-oriented behavior, and intrusion of the privacy.

Special attention must be given to smart objects that can act – more or less

autonomously – in the physical world and can physically endanger people and

their environment.

The advent of low-power wireless communication enables the communication

with a smart object without the need of a physical connection. Mobile smart objects
can move around in the physical space while maintaining their identity. The wide

availability of signals from the global positioning system (GPS) makes it possible to

make a smart object location and time-aware and offer services that are tuned to the
current context of use.

We can envision an autonomic smart object that has access to a domain

specific knowledge base – similar to the conceptual landscape introduced in

Sect. 2.2 – and is empowered with reasoning capabilities to orient itself in the

selected application domain. Based on the capability level of a smart object,

[Kor10] distinguish between activity aware, policy aware, and process aware

smart objects.

Example: A pay-per-use smart tool is an activity aware smart object that collects data

about the time and intensity of its use and transmits the data autonomously to the billing

department. A policy-aware smart tool will know about its use cases and will ensure that it

is not used outside the contracted use cases. A process-aware smart tool will reason about

its environment and guide the user how to optimally apply the tool in the given scenario.
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According to the IoT vision, a smart planet will evolve, where many of the

everyday things around us have an identity in cyberspace, acquire intelligence, and

mash-up information from diverse sources. On the smart planet, the world economy

and support systems will operate more smoothly and efficiently. But the life of the

average citizen will also be affected by changing the relation of power between

those that have access to the acquired information and can control the information

and those that do not.

13.2 Drivers for an IoT

Which are the forces that drive the development of the Internet of Things? They are

on both sides of the technology landscape: technology push forces and technology
pull forces. The technology push forces see in the IoT a vast new market for the

deployment of current and future information and communication technologies

(ICT). The IoT will help to utilize existing and new factories, provide new employ-

ment opportunities in the ICT sector, and contribute to the further development of

the ICT technologies in general.

In this section, the focus is mainly on technology pull forces. Which areas of our

economy, society, and life in general will benefit from the wide deployment of

the IoT? The following analysis is not exhaustive – we are only highlighting some

sectors where, according to our present understanding, the wide deployment of the

IoT technology will have a major impact.

13.2.1 Uniformity of Access

The Internet has achieved the worldwide interoperability of heterogeneous end-

systems over a wide variety of communication channels. The IoT should extend this

interoperability to the universe of heterogeneous smart objects. From the point of

view of reduction of the cognitive complexity (see Chap. 2), the IoT can make a

very significant contribution: the establishment of a uniform access pattern to

things in the physical world.

13.2.2 Logistics

The first commercial application of a forerunner of the IoT, the RFID (Radio

Frequency Identification – see Sect. 13.4) technology, is in the area of logistics.

With the decision of some major corporations to base their supply-chain manage-

ment on RFID technology, the development of low-cost RFID tags and RFID
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readers has moved forward significantly. There are many quantitative advantages in

using RFID technology in supply-chain management: the movement of goods can

be tracked in real-time, shelf space can be managed more effectively, inventory

control is improved, and above all, the amount of human involvement in the supply

chain management is reduced considerably.

13.2.3 Energy Savings

Already today, embedded systems contribute to energy savings in many

different sectors of our economy and our life. The increased fuel efficiency

of automotive engines, the improved energy-efficiency of household appli-

ances, and the reduced loss in energy conversion are just some examples of the

impact of this technology on energy savings. The low cost and wide distribu-

tion of IoT devices opens many new opportunities for energy savings: indi-

vidual climate and lighting control in residential buildings, reduced energy

loss in transmission by the installation of smart grids, and better coordination

of energy supply and energy demand by the installation of smart meters. The

dematerialization of parts of our life such as the replacement of physical

meetings by virtual meetings and the delivery of information goods such as

the daily paper, music, and videos by the Internet, lead to substantial energy

savings.

13.2.4 Physical Security and Safety

A significant technology pull for the IoT technology comes from the domains of

physical security and safety. Automated IoT based access control systems to

buildings and homes and IoT-based surveillance of public places will enhance the

overall physical security. Smart passports and IoT based identifications (e.g., a

smart key to access a hotel room or a smart ski lift ticket) simplify admission

controls checks and increase the physical security, while reducing human involve-

ment in these checks. Car-to-car and car-to-infrastructure communication will alert

the driver of dangerous traffic scenarios, such as an icy road or an accident, and

reduce the number of accidents.

IoT technology can help to detect counterfeit goods and suspected unapproved

spare parts that are becoming a safety risk in some application domains such as the

airline or automotive industry.

On the other side, safety and security applications intrude into the privacy of our

lives. It is up to policy makers to draw the fine line between the rights of a person to

individual privacy and the desire of the public to live in a safe environment. It is up

to the scientists and engineers to provide the technology so that the political

decisions can be flawlessly implemented.
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13.2.5 Industrial

In addition to streamlining the supply chain and the administration of goods by the

application of RFID technology, the IoT can play a significant role in reducing

maintenance and diagnostic cost. The computerized observation and monitoring of

industrial equipment does not only reducemaintenance cost because an anomaly can

be detected before it leads to a failure, but also improves the safety in the plant (see

also Sect. 11.6).

A smart object can also monitor its own operation and call for preventive or

spontaneous maintenance in case a part wears out or a physical fault is diagnosed.

Automated fault-diagnosis and simple maintenance are absolutely essential pre-

requisites for the wide deployment of the IoT technology in the domain of ambient

intelligence.

13.2.6 Medical

The wide deployment of IoT technology in the medical domain is anticipated.

Health monitoring (heart rate, blood pressure, etc.) or precise control of drug

delivery by a smart implant are just two potential applications. Body area networks

that are part of the clothing can monitor the behavior of impaired persons and send

out alarm messages if an emergency is developing. Smart labels on drugs can help a

patient to take the right medication at the right time and enforce drug compliance.

Example: A heart pacemaker can transmit important data via a Bluetooth link to a mobile

phone that is carried in the shirt pocket. The mobile phone can analyze the data and call a

doctor in case an emergency develops.

13.2.7 Life Style

The IoT can lead to a change in life-style. A smart phone can function as a browser

for smart objects and augment the reality we see with background information

retrieved from a diversity of context dependant databases.

13.3 Technical Issues of the IoT

13.3.1 Internet Integration

Depending on the computational capabilities and the available energy, a smart

object can be integrated into the Internet either directly or indirectly via a base
station that is connected to the Internet. The indirect integration will be chosen
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when the smart object has a very limited power budget. Application specific

power-optimized protocols are used to connect the smart object to a near-by base
station. The base station that is not power constrained can act as a standard web

server that provides gateway access to the reachable smart objects.

Example: In an RFID system, the RFID reader acts as a base station that can read the local

RFID tags. The reader can be connected to the Internet. In Sensor Networks, one or more

base stations collect data from the sensor nodes and forward the data to the Internet.

Recently, a number of major companies have formed an alliance to develop

technical solutions and standards to enable the direct integration of low-power

smart objects into the Internet. The Internet Engineering Task Force (IETF) has

initiated a working group (named 6LowPan) on IPv6 over Low Power Wireless
Area Networks to find an energy-efficient solution for the integration of the IPv6

standard with the IEEE 802.15.4 wireless near field communication standard.

Guaranteeing the safety and information security of IoT-based systems is

considered to be a difficult task. Many smart objects will be protected from general

Internet access by a tight firewall to avoid that an adversary can acquire control of a

smart object. The important topic of safety and security in the IoT is further

addressed in the final section of this chapter.

13.3.2 Naming and Identification

The vision of the IoT (that all of the billions of smart objects can communicate via

the Internet) requires a well-thought-out naming architecture in order to be able to

identify a smart object and to establish an access path to the object.

Every name requires a named context where the name can be resolved. The

recursive specification of naming context leads to a hierarchical name structure –
the naming convention adhered to in the Internet. If we want a name to be

universally interpretable without reference to a specific naming context, we need

a single context with a universally accepted name space. This is the approach taken

by the RFID community, which intends to assign an Electronic Product Code
(EPC) to every physical smart object (see also Sect. 13.4.2). This is more ambitious

than the forerunner, the optical bar code, which assigns a unique identifier only to a

class of objects.

Isolated Objects. The following three different object names have to be distin-

guished when we refer to the simple case of an isolated object:

l Unique object identifier (UID) refers to the physical identity of a specific object.
The Electronic Product Code (EPC) of the RFID community is such a UID.

l Object type name refers to a class of objects that ideally have the same proper-

ties. It is the name that is encoded in the well-established optical bar code.
l Object role name. In a given use context, an object plays a specific role that is

denoted by the object role name. At different times, the same object can play

312 13 Internet of Things



different roles. An object can play a number or roles and a role can be played by

a number of objects.

Example: The assumption that all objects that have the same object type name are

identical does not always hold. Consider the case of an unapproved spare part that has
the same visible properties and is of the same type as an approved spare part, but is a

cheaper copy of the approved part.

Example: An office key is an object role name for a physical object type that unlocks the
door of an office. Any instance of the object type is an office key. When the lock in the office

door is changed, a different object type assumes the role of the office key. A particular

office key can also unlock the laboratory. It then plays two roles, the role of an office key
and the role of a laboratory key. A master key can open any office – there are thus two

different keys that play the same role.

Composite Objects. Whenever a number of objects are integrated to form a com-

posite object, a new whole, i.e., new object is created that has an emerging identity

that goes beyond the identities of the constituent objects. The composite object

resembles a new concept (see Sect. 2.2.1) that requires a new name.

Example: George Washington’s axe is the subject of a story of unknown origin in which

the famous artifact is still George Washington’s axe (a composite object) despite having

had both its head replaced twice and its handle replaced three times [Wik10].

A composite object that provides an emergent service requires its own UID that is

hardly related to the UIDs of its constituent parts. The different names, UID, object
type name, and object role name must be introduced at the level of composite

objects as well. Since a composite object can be an atomic unit at the next level of
integration, the name space must be built up recursively.

Which one of the object names, introduced in the above paragraphs, should be

the access points for the communication with the Internet? It will be difficult to

manage the communication complexity if all objects that are contained in multilevel
composite objects can be accessed anytime at anyplace.

It is evident that the introduction of a flat name space for all smart objects of the

universe, as stipulated by the EPC is only a starting point. More research on the

proper design of name-space architectures in the IoT is needed.

13.3.3 Near Field Communication

The IoT requires, in addition to the established WLANs (Wireless Local Area

Networks), short-range energy-efficient WPANs (Wireless Personal Area Net-

works) in order to enable the energy-efficient wireless access to smart objects
over a small distance. The IEEE 802.15 standard working group develops standards

for WPAN networks. Among the networks that are conforming to the 802.15

standards are the Bluetooth network and the ZigBEE network.

Originally, Bluetooth has been introduced as a wireless alternative to the RS232

wire-bound communication channel [Bar07]. Bluetooth, standardized in IEEE

13.3 Technical Issues of the IoT 313



802.15.1, defines a complete WPAN architecture, including a security layer. At the

physical level, it achieves a data rate of up to 3 Mbit/s over a distance of 1 m (Class

3 – maximum transmission power of 1 mW) to 100 m (Class 1 – maximum

transmission power 100 mW) using the transmission technology of frequency

hopping. Bluetooth allows multiple devices to communicate over a single adapter.

The ZigBee alliance is a group of companies that develops a secure WPAN that

is intended to be simpler, more energy efficient, and less expensive than Bluetooth

[Bar07]. ZigBee uses high-level communication protocols based on the IEEE

802.15.4 standard for low-power digital radios. ZigBee devices are requested to

have a battery live of more than a year.

The NFC (Near Field Communication) standard [Fin03], an extension of the

ISO/IEC 14443 proximity-card standard, is a short-range high frequency wireless

communication technology which enables the exchange of data between devices

over a distance of <20 cm. The technology is compatible with both existing

smartcards and readers, as well as with other NFC devices, and is thereby compati-

ble with the existing contactless infrastructure already in use for public transporta-

tion and payment. NFC is primarily aimed for use in mobile phones.

13.3.4 IoT Device Capabilities versus Cloud Computing

Smart objects that have access to the Internet can take advantage of services that are

offered by the cloud (large data centers that provide their services through the

Internet). The division of work between a smart object and the cloud will be

determined, to a considerable degree, by privacy and energy considerations

[Kum10]. If the energy required to execute a task locally is larger than the energy

required to send the task parameters to a server in the cloud, then the task is a

candidate for remote processing. However, there are other aspects that influence the

decision about work distribution: autonomy of the smart object, response time,

reliability, and security.

13.3.5 Autonomic Components

The large number of smart objects that are expected to populate our environment

requires an autonomic system management without the need of frequent human

interactions. This autonomic management must cover network service discovery,
system configuration and optimization, diagnosis of failures and recovery after
failures, and system adaptation and evolution. There is a need for a multi-level
autonomic management, starting with the fine-grained management of components

up to the coarse grained management of massive assemblies of components or

large systems.
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Figure 13.1 shows the generic MAPE-K (Monitoring, Analyzing, Planning,

Execution with a Knowledgebase) architecture of an autonomic component
[Hue08]. An autonomic component consists of two independent fault-containment
units (FCU), a managed component and an autonomy manager. The managed
component can be a single component, a cluster of components, or a part of a larger

system. The autonomy manager consists of a monitor that observes and analyzes

information about the behavior of the managed component, a planning module that

develops and evaluates alternative plans to achieve the stated goals, and finally an

interface to the managed object that allows the autonomy manager to influence the

behavior of the managed component. The autonomy manager maintains a knowl-
edge base with static and dynamic entries. The static entries are provided a priori,
i.e., at design time. They set up the goals, beliefs, and generic structure of the

knowledge base, while the dynamic entries are filled in during operation to capture

the acquired information about concrete situational parameters. The multicast
communication primitive makes it possible for the autonomy manager to observe

the behavior of the managed component and its interactions with the environment

without any probe effect.
In its simplest form, the autonomy manager recognizes objects and object

changes (events) and assigns them to known concepts (see Sect. 2.2.1). It then

selects an action based on event-condition-action rules. If more than one action is

applicable, it uses utility functions to select the action with the highest utility value

for achieving the desired goals. In a more advanced form, the autonomy manager is

based on a cognitive architecture that supports some form of advanced reasoning

and can improve its decision by evaluating past decisions and by the incorporation

of learning [Lan09].

13.4 RFID Technology

The easy and fast identification of things is required in many situations, e.g., in

stores, warehouses, supermarkets etc. For this purpose, an optical barcode is

attached to an object. Reading an optical barcode requires the careful positioning

of the object by a human such that a direct line-of-sight between the barcode and the

barcode reader is established.

effectors

managed component

knowledge base
monitor
analyze

plan
execute

autonomy manager

sensors

autonomic componentFig. 13.1 Model of an

autonomic component

(Adapted from [Hue08])
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13.4.1 Overview

In order to be able to automate the process of object identification and eliminate the

human link, electronic tags (called RFID tags) that can be read from a small

distance by an RFID reader have been developed. An RFID reader does not require

a direct line-of-sight to the RFID tag. The RFID tag stores the unique Electronic

Product Code (EPC) of the attached object. Since an RFID tag has to be attached to

every object, the cost of an RFID tag is a major issue. Due to the standardization of

the RFID technology by the International Standard Organization (ISO) and the

massive deployment of RFID technology, the cost of an RFID tag has been reduced

significantly over the last few years.

The RFID reader can act as a gateway to the Internet and transmit the object

identity, together with the read-time and the object location (i.e., the location of the

reader) to a remote computer system that manages a large database. It is thus

possible to track objects in real-time.

Example: An electronic ski pass is an RFID tag that is queried by the reader that is built

into the admission gate to a ski lift. Based on the object identifier, a picture of the person

that owns the ski pass is displayed to the operator and the gate is opened automatically if the

operator does not intervene.

13.4.2 The Electronic Product Code

Whereas an optical barcode denotes a product class (all boxes of the same product

have the same barcode), the EPC of an RFID tag denotes an object instance (every

box has a unique identifier). It is the intent of the EPC to assign a unique identifier
(UID) to every identifiable thing on the globe, i.e., a unique name to each smart
object of the IoT.

The EPC is managed by the international organization EPC global. In order to

cope with the huge number of things the EPC must identify, the EPC contains a

number of fields. A small header field determines the structure of the remaining

fields. A typical EPC has a length of 96 bits and contains the following fields:

l Header (8 bits): defines the type and the length of all subsequent fields.
l EPC Manager (28 bits): specifies the entity (most often the manufacturer) that

assigns the object class and serial number in the remaining two fields.
l Object Class (24 bits): specifies a class of objects (similar to the optical bar

code).
l Object Identification Number (36 bits): contains the serial number within the

object class.

The EPC is unique product identification, but does not reveal anything about the

properties of the product. Two things that have the same properties, but are

designed by two different manufacturers, will have completely different EPCs.
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Normally, the unique EPC is used as a key to find the product record in a product
database. The product record contains all required information about the attributes

of the product.

13.4.3 RFID Tags

A RFID Tag contains as its most important data element the EPC of the associated

physical thing. A number of different RFID tags have been developed and standar-

dized. Basically, they fall into two main categories: passive RFID tags and active
RFID tags.

Passive RFID Tags. Passive tags do not have their own power supply. They get the

power needed for their operation from energy harvested out of the electric field that

is beamed on them by the RFID reader. The energy required to operate a passive tag

of the latest generation is below 30 mW and the cost of such a tag is below 5 ¢.

Passive tags contain in addition to a standardized EPC (Electronic Product Code) as

a unique identification number selected other information items about product

attributes. Due to the low level of the available power and the cost pressure on

the production of RFID tags, the communication protocols of passive RFID tags do

not conform to the standard Internet protocols. Specially designed communication

protocols between the RFID tag and the RFID reader that consider the constraints of

passive RFID tags have been standardized by the ISO (e.g., ISO 18000-6C also

known as the EPC global Gen 2) and are supported by a number of manufacturers.

The parameters of a typical low-cost passive RFID tag are given in Table 13.1.

Active RFID Tags. Active tags have their own on-board power supply, e.g., a

battery that gives them the capability to support many more services than passive

tags. The lifetime of an active tag is limited by the lifetime of the battery, typically

in the order of a year. Active tags can transmit and receive over a longer distance

than passive tags, typically in the order of hundreds of meters, can have sensors to

monitor their environment (e.g., temperature, pressure) and sometimes support

standard Internet communication protocols. In some sense, an active RFID tag

resembles a small embedded system. The ISO standard 18000-7 specifies

Table 13.1 Parameters of a typical low-cost passive RFID tag (Adapted

from [Jue05])

Storage 128–512 bits of read-only storage

Memory 32–128 bits of volatile read-write memory

Gate count 1,000–10,000 gates

Operating frequency 868–956 MHz (UHF)

Clock cycles per read 10,000 clock cycles

Scanning range 3 m

Performance 100 read operations per second

Tag power source Passively powered by reader via RF signal

Power consumption 10 mW
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the protocol and the parameters for the communication with an active tag in the

433 MHz range. The reduction of the power consumption of an active RFID Tag

in the sleep mode is a topic of current research.

13.4.4 RFID Readers

The RFID reader is a gateway component between the world of RFID tags and the

Internet. These two worlds are characterized by different architectural styles,

naming conventions, and communication protocols. On the Internet side, an

RFID reader looks like a standard web server that adheres to all Internet standards.

On the RFID side, the RFID reader respects the RFID communication protocol

standards. The RFID reader has to resolve all property mismatches.

13.4.5 RFID Security

Whenever we connect a computer to the Internet, sensitive security issues arise

[Lan97] that must be addressed. Standard security techniques are based on the

deployment of cryptographic methods, like encryption, random number generation,
and hashing as outlined in Sect. 6.2. The execution of cryptographic methods

requires energy and silicon real estate, which are not sufficiently available in all

smart objects, such as low-cost RFID tags. The often-heard argument that compu-

tationally constrained RFID tagged objects will disappear in the near future as

the microelectronic devices become cheaper overlooks the price pressure on

simple RFID tags. If low-cost RFID tags are placed on billions of retail products,

even a 1-¢ increase in the cost of a tag for the provision of cryptographic capabil-

ities will be shunned.

The information security threats in the IoT can be classified into three groups:

(1) the threats that compromise the authenticity of information, (2) the threats to

privacy caused by a pervasive deployment of IoT products, and (3) denial of service
threats. We assume that the vast majority of IoT devices are connected to the

cyberspace by a wireless connection. A wireless connection always presents a

serious vulnerability since it opens the door to an unnoticed observation of the

traffic by an adversary.

Authentication. It is a basic assumption in the IoT that the electronic device, e.g., a
RFID tag, represents a unique physical thing in cyberspace and that this link

between the electronic device and the physical thing which has been established

by a trusted authority can be relied upon. This belief in tag authenticity can be

shaken easily. Scanning and replicating an unprotected tag is relatively easy, since a

tag is nothing else than a string of bits that can be copied without difficulty.
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Attaching another physical thing – e.g., a faked product – to an authentic tag can
break the link between the physical thing and the tag – the representative of the

physical thing in cyberspace. This kind of attack has to be addressed in the level

of physical design of a smart object and cannot be dealt with by cyberspace

security methods.

The known techniques to ensure the authenticity of the thing behind a low cost

RFID tag are quite limited. A tag is a bit-string that can be read by any commodity

reader and can be copied to produce a cloned tag. Even a digital signature could not

prevent cloning of tags.Men in the middle attacks, where an attacker mimics a correct

tag, might break the established link between the reader and the tag. Accessing the

product database can detect the existence of cloned tags by discovering that the

uniqueness property of the EPC has been violated, but it cannot eliminate cloning.

Example: Accessing the product database can identify a counterfeit piece of art that

carries a cloned tag and finding out that the genuine object is at a location that is different

from the tag reader.

Tamper-proof tags that physically break when they are detached from the thing they
have been attached to by the trusted authority are one solution to the problem of

physical tag stealing. In order to be able to ascertain the authenticity of valuable

things physical one-way functions (POWF) have been proposed [Pap02]. An exam-

ple for a POWF is a transparent optical device with a random three-dimensional

microstructure that is attached to the thing in a tamper-proof manner. Since the

randomness of the structure cannot be controlled during the manufacturing process,

it is impossible to produce two POWF that are alike. When read by a laser under a

specific angle, a POWF response is a bit stream that is characteristic for this unique

POWF. Depending on the reading angle, different characteristic bit streams can be

retrieved. These bit streams can be stored in the product database. It is difficult for

an adversary to clone a POWF, because it is a thing with random characteristic
physical properties that cannot be represented by a mathematical function.

A POWF is not a construct of cyberspace that can be copied or reconstructed.

Privacy. The main privacy concern in the RFID world is the clandestine reading of
a tag by an unauthorized reader. Since low-cost RFID tags are unprotected and can

be read by commodity readers, clandestine tag tracking by unauthorized readers

discloses valuable information to an adversary. If the adversary uses a sensitive

reader with a high-power antenna output (rogue reading), he can significantly

extend the nominal read range. The information about EPC codes and other

attributes that are contained in the tag can be linked with the identity of the person

carrying the tag in order to construct a personal profile. Since a low-cost tag does

not have the cryptographic capability to authenticate the reader, it will disclose its

information whenever it is queried. Clandestine tag reading can be prevented by

permanently killing the tag as soon as the tag enters the consumer domain, i.e., at

the point-of-sale. Tag killing enforces consumer privacy effectively. However, if

tags support the functionality of tag killing, a vulnerability with respect to avail-

ability is established.
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Example: By analyzing the tagged medication a person is carrying, an adversary could

infer information about the health condition of the person.

Example: If – as has been proposed – money bills contain an RFID tag, an adversary with

a hidden reader could determine unnoticeably the amount of money a person is carrying in

her/his briefcase.

Example: In a commercial setting, an adversary with a hidden reader could periodically

monitor the inventory of goods in a competing supermarket.

Another privacy enforcement technique does not prevent, but detects clandestine
reading. A consumer can carry a special monitoring tag that alerts the carrier

whenever a clandestine reading attack is detected. The monitoring tag transforms

a clandestine reading action to an open reading action and thus exposes the hidden
adversary.

Denial of Service. A denial of service attack tries to make a computer system

unavailable to its users. In any wireless communication scenario, such as an RFID

system or a sensor network, an adversary can jam the ether with high-power signals

of the appropriate frequency in order to interfere with the communication of the

targeted devices. In the Internet, an adversary can send a coordinated burst of

service requests to a site to overload the site such that legitimate service requests

cannot be handled any more (see also Sect. 6.2.2 on botnets).

Some RFID tags support – as a privacy enhancement mechanism – the function-

ality to put a tag into a sleep mode or to permanently kill a tag. An adversary can use

this functionality to interfere with the proper operation of the service.

Example: At an automated supermarket checkout an RFID reader determines the pur-

chased goods by reading the RFID tags of the items in the shopping cart. If an adversary

disables some tags, the respective items will not be recognized and don’t appear on the bill.

13.5 Wireless Sensor Networks

Recent progress in the field of Micro-Electro-Mechanical Systems (MEMS), low-

power microelectronics, and low-power communication has made it possible to

build small integrated smart objects, called sensor nodes, that contain a sensor, a

microcontroller and a wireless communication controller. A sensor node can acquire

a variety of physical, chemical, or biological signals to measure properties of its

environment. Sensor nodes are resource constrained. They are powered either by a

small battery or by energy harvested from its environment, have limited computa-

tional power, a small memory, and constrained communication capabilities.

In order to monitor and observe a phenomenon, a number (from few tens to

millions) of sensor nodes are deployed, either systematically or randomly, in a

sensor field to form an ad hoc self-organizing network – a wireless sensor network

(WSN). The WSN collects data about the targeted phenomenon and transmits the

data via an ad-hoc multi-hop communication channel to one or more base stations

that can be connected to the Internet.
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After a sensor node is deployed in a sensor field, it is left on its own and relies on
its self-organizing capabilities. At first, it must detect its neighbors and establish

communication. In the second phase, it must learn about the arrangement in which

the nodes are connected to each other, the topology of nodes, and build up ad-hoc

multi-hop communication channels to a base station. In case of the failure of an

active node, it must reconfigure the network.

Wireless sensor networks can be used in many different applications such as

remote environment monitoring, surveillance, medical applications, ambient intel-

ligence, and in military applications. The utility of a wireless sensor network is in

the collective emergent intelligence of all active sensor nodes, not the contribution
of any particular node.

A sensor network is operational as long as a minimum number of nodes is active

and the connectivity of the active nodes to one of the base stations is maintained. In

battery-powered sensor networks, the lifetime of the network depends on the energy

capacity of the batteries and the power-consumption of a node. When a sensor node

has depleted its energy supply, it will cease to function and cannot forward

messages to its neighbors any more. Energy conservation is thus of utmost impor-

tance in sensor networks. The design of the nodes, the communication protocols,

and the design of the system and application software for sensor networks are

primarily determined by this quest for energy efficiency and low cost.

Recently, attempts are made to use the RFID infrastructure for the interconnec-

tion of autonomous low-cost RFID-based sensor nodes [Bha10]. These sensor

nodes operate without a battery and harvest the energy either from the environment

or the electromagnetic radiation emitted by the RFID reader. This technology has

the potential to produce long-lasting, low-cost ubiquitous sensor nodes that may

revolutionize many embedded applications.

Points to Remember

l According to the IoT vision, a smart planet will evolve, where many of the

everyday things around us have an identity in cyberspace, acquire intelligence,

and mash-up information from diverse sources.
l The Electronic Product Code (EPC) is a unique identifier for the naming of

every physical smart object on the planet. This is more ambitious than the

forerunner, the optical bar code, which assigns a unique identifier only to a

class of objects. The EPC is managed by the international organization EPC
global.

l A composite object requires its own UID that is only loosely related to the UIDs

of its constituent parts. The different names, UID, object type name, and object
role name must be introduced at the level of composite objects as well. Since a

composite object can be an atomic unit at the next level of integration, the name

space must be built up recursively.
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l The division of work between a smart object and the cloud will be determined, to

a considerable degree, by energy considerations. If the energy required to

execute a task locally is larger than the energy required to send the task para-

meters to a server in the cloud, the task is a candidate for remote processing.
l The autonomic management of smart objects must cover network service dis-

covery, system configuration and optimization, diagnosis of failures and recovery
after failures, and system adaptation and evolution.

l An RFID reader can act as a gateway to the Internet and transmit the object

identity, together with the read-time and the object location (i.e., the location of

the reader) to a remote computer system that manages a large database.
l The information security threats in the IoT can be classified into three groups:

(1) the threats that compromise the authenticity of information, (2) the threats to

privacy caused by a pervasive deployment of IoT products, and (3) denial of
service threats.

l In order to avoid clandestine reading, a tag must authenticate the reader.
l It is difficult for an adversary to clone physical one-way functions (POWF),

because it is a thing with random characteristic physical properties that cannot
be represented by a mathematical function. A POWF is not a construct of
cyberspace that can be copied or reconstructed.

l After a sensor node is deployed in a sensor field, it is left on its own and relies on
its self-organizing capabilities. At first, it must detect its neighbors and establish

communication. In the second phase it must learn about the arrangement in

which the nodes are connected to each other, the topology of nodes, and build up
ad-hoc multi-hop communication channels to a base station. In case of the

failure of an active node, it must reconfigure the network.
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Review Questions and Problems

13.1 What is the vision of the Internet of Things and which are the most pressing

technical issues that must be resolved?

13.2 What are the drivers for the Internet of Things?
13.3 What is a smart object?
13.4 Discuss the naming of smart objects! What is a UID, a type name, a role

name, or a name of a composite object?
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13.5 Discuss the different standards for near-field communication!

13.6 What is the relation between the IoT and cloud computing?
13.7 Describe the MAPE-K model of an autonomic component!

13.8 What are the functions of an RFID reader?

13.9 What are typical parameters for low-costs RFID tags?

13.10 What is the electronic product code (EPC) and what is its relation to the

ubiquitous optical bar code?

13.11 What is a physical one-way function (POWF)? Where is it needed?

13.12 What are the three main security threats in the RFID field?

13.13 How is a sensor node deployed in a sensor field?

13.14 Describe the self-organizing capabilities of a sensor node!
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Chapter 14

The Time-Triggered Architecture

Overview This final chapter puts a closing bracket around the contents of the book.

It is shown by a concrete example that it is possible to integrate the different

concepts that have been explained in the previous 13 chapters of this book into a

coherent framework. This coherent framework, the time-triggered architecture
(TTA), is the result of more than 25 years of research at the Technische Universit€at
Wien where numerous master and PhD students have contributed their part to the

investigations. We must also gratefully mention the many inputs from colleagues

from all over the world, particularly form the IFIP Working Group 10.4, that

provided critical feedback and constructive suggestions. At first, the research was

driven by curiosity to get a deep understanding of the notions of real-time, simulta-
neity, and determinism. In the later phases, the active participation by industry

brought in the technical and economic constraints of the real world of industry and

helped to adapt the concepts. What now has the appearance of a consistent whole is

the result of many iterations and an intense interaction between theoretical insights

and practical necessities.

The chapter starts with a short description of the TTA, showing some examples

of the industrial uptake and the impact of the time-triggered technology. The

following section portrays the architectural style of the TTA. The architectural

style explains the key principles that drive the design of an architecture. In the TTA,

these principles relate to complexity management, a recursive component concept,
coherent communication by a single mechanism, and concern for dependability and
robustness. The architectural style is concretized in the architectural services that

form the contents of Sect. 14.3. Space does not permit to describe these services in

detail. The reader is referred to other documents, starting with the book on

GENESYS [Obm09] to get more in-depth information. The final section of this

closing chapter presents the results of a recent research project that puts the time-

triggered architecture on a system-on-chip, where a time-triggered network on chip

connects the IP-cores, the components of the TTA. We hope that in the future some

of these innovative ideas will be taken up by industry to provide a cost-effective

execution environment that supports the design of large understandable and

dependable real-time systems.

H. Kopetz, Real-Time Systems: Design Principles for Distributed Embedded Applications,
Real-Time Systems Series, DOI 10.1007/978-1-4419-8237-7_14,
# Springer Science+Business Media, LLC 2011
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14.1 History of the TTA

This short view back on the origins and the history of the time-triggered

architecture illustrates the close interdependence among basic research, technol-

ogy research, and industrial innovation. The TTA experience has shown that an

industrial deployment of a radical innovation takes a long time – much more than

10 years. This is a reminder to funding agencies that a short-range project view

will not produce radical innovations, but only marginal improvements of existing

technology.

14.1.1 The MARS Project

Around 1980, the industrial development of real-time systems proceeded in an

ad hoc manner without a strong conceptual foundation. Systems were built

according to the intuitive feeling of skilled practitioners. During an extensive

commissioning phase, experienced programmers finely tuned the diverse para-

meters of real-time systems such as task priorities and communication timeouts.

Even minor changes and additions to the software were problematic, since they

required an expensive readjustment and retest of many system parameters. Since

system design was not based on solid theoretical foundations, there was always

a risk that the system will fail to meet the performance requirements in

infrequently occurring rare event scenarios. As discussed in Chap. 1, the

predictable performance of a real-time system in a rare-event scenario is of

paramount importance in many applications (see also the example in Sect. 1.2.1

on a power blackout).
In 1979, the MARS (MAintainable Real-Time System) project started at the

Technical University of Berlin with the objective to develop a strong conceptual

basis, constructive methods and a new architectural framework for the systematic

design and maintenance of distributed real-time systems [Kop85]. During the

evaluation of the first MARS prototype around 1982, it became clear that more

fundamental research, both at the conceptual and experimental level, was needed to

gain a better understanding of the following topics:

l Development of a proper model of time and construction of a fault-tolerant

global time base in a distributed real-time system. Such a distributed real-time

base, without reliance on a single central clock, is at the core of dependable real-

time systems.
l The notion of state, determinism and simultaneity and its role in the develop-

ment of fault-tolerant systems.
l Real-time communication protocols that provide timeliness and error-detection

coverage with minimal jitter.
l The effectiveness of mechanisms that establish the fail-silence of architectural

units, such that cost-effective structures for fault masking can be built.
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In 1983, the MARS project moved from the TU Berlin to the Vienna University

of Technology, where the Austrian Ministry of Science and Technology and the

European Commission generously funded the continuation of the research. In the

following years the focus of the research shifted to investigate fundamental pro-

blems in the field of fault-tolerant clock synchronization and the design of real-time

protocols. A prototype VLSI chip, the CSU (clock synchronization unit), was

developed to support the fault-tolerant clock synchronization in distributed systems

[Kop87]. The CSU was used in a second academic prototype of MARS that was

subjected to extensive fault-injections experiments [Kar95,Arl03]. This academic

prototype received some attention from the research and funding communities after

publishing a video of a control application with this prototype, The Rolling Ball on
MARS – the video can be downloaded from the web [Mar91].

14.1.2 The Industrial TTA Prototype

In the following years, the success of the academic prototype and the strong

industrial interest in building real-time systems constructively led to a number of

technology-oriented research projects, funded mainly by the European Commis-

sion. In these projects, the first industrial-strength prototype of the time-triggered

architecture, using the TTP protocol, was developed with strong participation of the

automotive industry. This industrial prototype was used in a car to implement a

fault-tolerant brake-by-wire system. The precise interface specifications of the

components, enabled by the availability of a global time base, were decisive for

reducing the planned commissioning time of the prototype brake-by-wire system by

an order of magnitude. The success of this prototype gave industrial credibility to

the concepts of the time-triggered architecture. In 1998, TU-Vienna launched a

spinoff company, TTTech (Time-Triggered TECHnology) to further develop and

market the time-triggered technology. In the meantime, TTTech has been success-

ful to deploy the time-triggered technology in a number of reputable industrial

projects, among them the Airbus A 380, the Boeing 787 (the Dreamliner), the
AUDI A 8 premium car, and the NASA Orion program [McC09].

14.1.3 The GENESYS Project

Recognizing the strategic importance of embedded computing, the European Com-

mission formed, together with industry, academia, and national governments, the

European technology platform ARTEMIS (Advanced Research and Technology for

EMbedded Intelligence and Systems) in 2004. It is a goal of ARTEMIS to develop

a cross-domain embedded system architecture, supported by design methods and

tools, to significantly improve the functionality, dependability, and cost-effectiveness

of embedded systems. In a first phase an expert working group consisting of
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industrial and academic partners captured the requirements and constraints of

such a cross-domain architecture [Art06]. The following GENESYS (GENeric

Embedded SYStems) project, submitted by a consortium of 20 industrial and

academic partners coming from the different embedded system domains, was

funded by the Framework Program of the European Commission to develop a

blueprint for such an architecture that should consider the captured requirements

and should be applicable in the industrial domain as well as in the multimedia

domain. The architecture blueprint, developed during the GENESYS project, has

been strongly influenced by the concepts and experience with the time-triggered

architecture. The blueprint is published in a book freely available on the web

[Obm09]. At the time of writing, there are ongoing ARTEMIS projects

(INDEXYS and ACROSS) that implement the GENESYS architecture.

14.2 Architectural Style

The architectural style describes the principles and structuring rules that character-
ize an architecture (see Sect. 4.5.1). A principle is an accepted statement about

some fundamental insight in a domain of discourse. Principles establish the basis of

the formulation of operational rules, i.e., the services of an architecture.

14.2.1 Complexity Management

As outlined in Chap. 2, the management of the ever-increasing cognitive complexity –
the antonym of simplicity – of embedded systems is a subject of steadily increasing

concern. The architectural style of the TTA is shaped to a significant degree by this

quest to control the growth of complexity of large embedded systems and to facilitate

the building of understandable systems.

In Sect. 2.5, seven design principles that lead to understandable systems have

been introduced. Each one of these seven principles is part of the architectural style

of the TTA. Of distinct importance for the TTA is principle seven, the principle of
consistent time. Embedded computer systems must interact with the physical

environment that is ruled by the progression of physical time. The progression of

physical time is thus a first-order citizen and not an add-on of the cyber-model that

is the basis of the computer control of the physical environment. The availability of

a fault-tolerant sparse global time base in every node of a large embedded system is

at the foundation of the TTA. This global time base helps to simplify a design. In

the TTA, this global time base is used:

l To establish a consistent temporal order of all relevant events in cyber space and
to solve the problem of simultaneity in a distributed computer system. The

consistent temporal order is a prerequisite for introducing the notion of a consis-

tent state of a distributed system. A consistent notion of state is needed when a

new (repaired) component must be reintegrated into a running system.
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l To build systems with deterministic behavior that are easy to understand, avoid

the occurrence of Heisenbugs, and support the straightforward implementation

of fault-masking by redundancy.
l To monitor the temporal accuracy of real-time data and to ensure that a control

action at the interface to the physical environment is based on data that is

temporally accurate.
l To synchronize multimedia data streams that originate from different sources.
l To perform state estimation in order to extend the temporal accuracy of real-time

data to the instant of use in case the dynamics of the physical process outpace the

capabilities of the computer system.
l To precisely specify the temporal properties of interfaces such that a component-

based design-style can be followed. The reuse of components is critically depen-
dent on a precise interface specification that must include the temporal behavior.

l To establish conflict-free time-controlled communication channels for the trans-
port of time-triggered (TT) messages. TT-messages have a short delay and

minimal jitter and thus help to reduce the dead-time in distributed phase-aligned

control loops. This is of particular importance in smart grid automation.
l To detect the loss of a message within one time granule. A short error- detection

latency is fundamental for any action taken to increase the availability of a

system.
l To avoid the replay of messages and to strengthen the services of security

protocols.

Considering the above listed services that can best be accomplished by using a

fault-tolerant sparse global time, it is our opinion that the availability of a consistent

global time real-time base is an element of the solution space and not of the problem

space in the design of a real-time system.

14.2.2 Component Orientation

The notion of a component introduced in Chap. 4 is the primitive structure element
of the time-triggered architecture. A TTA component is a self-contained hardware/

software unit that interacts with its environment solely by the exchange of mes-

sages. A component is a unit of design and a unit of fault-containment (FCU). The

message-based linking interfaces (LIF) of a component are precisely specified in

the domains of time and value and are agnostic about the concrete implementation

technology of a component. A component can be used on the basis of its interface

specification without knowing the internals of the component’s implementation.

The time-triggered integration framework of the TTA ensures that real-time trans-

actions that span over more than one component have defined end-to-end temporal

properties. In a time-critical RT-transaction, the computations of the components

and the message transport by the time-triggered communication system can be

phase-aligned.

14.2 Architectural Style 329



It is a principle of the TTA that a component can be expanded to a new cluster

without changing the specification of the LIF of the original component that

becomes the external LIF of the new cluster. After such an expansion, the external

LIF is provided by a gateway component that supports on the other side a second

LIF to the new (expanded) cluster (the cluster LIF).

Example: Viewed from the in-car cluster, the gateway component of the in-car cluster in

the right lower corner of Fig. 4.1 has two interfaces, the cluster LIF at its upper side and the

external LIF at its lower side. At the external LIF only those information items from the in-
car cluster are made available to other cars that are relevant for the safe coordination of the

traffic.

We thus have a recursive component concept in the TTA. Depending on the point of
view taken, a set of components can be viewed as a cluster (focus on the cluster LIF
of the gateway component) or as a single component (focus on the external LIF of

the gateway component). This recursive component concept makes it possible to

build well-structured systems of arbitrary size within the TTA.

Components can be integrated to form hierarchical structures or network struc-

tures. In a hierarchical structure, a designated gateway component links different

levels of the hierarchy. We now take the view from the lower level of the hierarchy.

The designated gateway component has two LIFs, one to the lower level of the

hierarchy (the cluster LIF) and another one to the higher level of the hierarchy (the
external LIF). Since the different hierarchical levels can obey different architectural
styles, the designated gateway component must resolve the ensuing property mis-

matches. The external LIF of the gateway component, viewed from the lower level,

is a local unspecified interface of the cluster. Vice versa, the cluster LIF of the

gateway component becomes a local unspecified interfacewhen viewed from above.

Example: In a TTMPSoC (Time-Triggered MultiProcessor on a Chip) the primitive

element is an IP-core (Intellectual Property core). An IP-core implements a self-contained

component. The set of IP-cores on the chip forms a cluster of components that are

connected by a time-triggered network on chip (TTNoC). A gateway IP-core has (in

addition to the cluster LIF) an external LIF that connects the chip to the outside world.

From the point of view of the outside world, the external LIF of the gateway IP-core can be

considered an interface to the chip component, i.e., the whole TTMPSoC. At a higher level,

a cluster of chip components forms a device component, and so on.

If a cluster is linked with two (or more) gateway components to two (or more) other

clusters, flat network structures can be created. In such a flat network structure, a

gateway component can filter the information that is available within a particular

cluster and will present only those information items at its external LIF that are

relevant for the services of the respective connected cluster.

14.2.3 Coherent Communication

The only communication mechanism of the TTA is the unidirectional BMTS (basic

message transport service) that follows, whenever possible, the fate-sharing model
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of the Internet. The fate-sharing model was formulated by David Clark, an architect

of the DARPA net, as follows: The fate-sharing model suggests that it is acceptable
to lose the state information associated with an entity if, at the same time, the entity
itself is lost [Cla88, p. 3]. The fate-sharing principle demands that all state infor-

mation that is associated with a message transfer must be stored in the endpoints of

the communication. Even in the design of the time-triggered network-on-chip

(TTNoC), described in Sect. 14.4, the fate-sharing principle was considered. The

fate sharing principle can be applied in a safety-critical configuration if the end

systems are guaranteed to be fail-silent. Otherwise, information about the intended

temporal behavior of the end-systems has to be also stored in an independent FCU,

a guardian or the network, to contain the faulty behavior of a babbling node (see

also Sect. 6.1.2).

As long as different subsystems of the TTA are connected by time-triggered

communication systems, such as the TTNoC, TTP, or TTEthernet, the BMTS is

characterized by a constant transport delay and a minimal jitter of one granule of

the global time. If a message is transported via an event-triggered protocol (e.g., in

the Internet), no such temporal guarantee can be given.

This single coherent communication mechanism makes it possible to move a

component (which can be an IP-core of a system-on-chip) to another physical

location without changing the basic communication mechanism among the

components.

14.2.4 Dependability

The architectural style of the TTA is strongly influenced by dependability concerns

such that secure, robust, and maintainable embedded systems can be built with

reasonable effort. The following principles of the TTA support the construction of

dependable systems:

l A component is a fault-containment unit (FCU). Temporal failures of compo-

nents are contained at the component boundaries by the time-triggered commu-

nication system.
l The BMTS is multicast. An independent diagnostic component can observe the

behavior at the component LIF without probe effects.
l The BMTS and the basic system component services avoid NDDC (non-

deterministic design constructs) so it is possible to build systems with determin-
istic behavior in the TTA.

l Fault tolerant units (FTU) of replicated deterministic components can be formed

to mask an arbitrary fault in any one of the components.
l Components publish their ground state periodically, in order that a diagnostic

component can monitor the plausibility of the ground state, can detect anomalies,

and initiate a reset and restart of a component in case of a ground-state corruption

caused by a transient fault. This principle helps to improve the system robustness.
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l The available global time can be used to strengthen the security protocols.
l The recursive component concept improves the evolution, since new functions

can be implemented by expanding a single component into a new cluster of

components, without changing the properties of the external LIF of the new

cluster.
l Every TTA system that is connected to the Internet should support a secure

download service so a new software version of any component can be down-

loaded automatically.

14.2.5 Time Aware Architecture

The time-triggered architecture provides the framework for the design of a depend-

able monolithic real-time system. If we link TTA systems, designed by different

organizations, to form a system of systems (SoS), then the design rules must be

relaxed in order to match the realities of widely distributed systems that interact by

event-messages across the Internet (see also Sect. 4.7.3). If each one of the

autonomous constituent systems of an SoS has access to a synchronized global

time of known precision, then we call such an SoS a time-aware architecture
(TAA). With today’s technology it is relatively easy to implement a TAA: at

every site, a GPS receiver captures the worldwide time-signal and synchronizes

the clocks at the different sites of the TAA. Although a TAA is not time-triggered, it

can still accrue many of the advantages of a global time listed in Sect. 14.2.1,

provided all messages contain the time-stamp of the sender in their data field.

14.3 Services of the TTA

14.3.1 Component-Based Services

The TTA provides the platform and platform services for the integration of com-

ponents. We distinguish between three categories of services: (1) the core system
services that are needed in any instantiation of the architecture, (2) the optional
system services that provide, in addition to the core services, functionality that is

needed in many, but not all, instantiations of the architecture, and (3) the applica-
tion specific services that are specific to a given application or application domain.

The core system services and the optional system services are provided either by

standalone system components or are part of the generic middleware (GM) of the

component software (see also Sect. 9.1.4).

We consider it a major achievement that in the TTA there is no need for a large
monolithic operating system. It is difficult to estimate the execution time of a real-

time computation if dynamic operating system mechanisms and a hypervisor stand
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between the application code and the execution of the code by the hardware.

Furthermore, the certification of a large monolithic operating system is challenging.

In the TTA, many of the conventional operating system functions can be imple-

mented by self-contained system components. Whenever a system component is

mature and stable, its implementation can be moved from a software-on-a-CPU

implementation to an ASIC, thus realizing a very significant reduction of energy

requirements (see Fig. 6.3) and silicon real estate.

Every software-on-a-CPU component has a local lightweight operating system

and generic middleware (GM) that implements standardized high-level protocols

and interprets the control messages that arrive via the TII interface (see Sect. 4.4).

14.3.2 Core System Services

The core system services of the TTA are minimal in the sense that only those

services that are absolutely essential to build higher-level services or to maintain

the desired properties of the architecture are included in the set of core system

services. The core services must be free of NDDCs (non-deterministic design

constructs, see Sect. 5.6.3) in order that deterministic computations can be imple-

mented. In many cases, the implementation of a powerful dynamic system service is

partitioned into a small core system service and a more intricate optional system

service, since in a static safety-critical system only the core system services are

needed and therefore the subject of certification.

Example: A dynamic message scheduler that must be part of any dynamic resource

management is not included in the core system services. However, a much simpler checker
that checks the properties of a schedule and ascertains that the constraints of a static safety

critical schedule have not been violated by the dynamic scheduler is part of the core system

services.

The following paragraphs give a high-level overview of the TTA services. A more

detailed description of the services can be found in [Obm09].

Basic Configuration Service. This service loads a job, i.e., the core image of the

software that has been generated by a development system, onto the specified

hardware unit and thereby generates a TTA component. The core image of the

software includes the application software, the GM (generic middleware, see

Sect. 9.1.4), and the local operating system. The basic configuration service is

also needed to reconfigure the system after a hardware unit has failed permanently.

The basic configuration service includes: (1) a secure hardware identification

service to uniquely identify the hardware and (2) a basic boot service that accesses

the boot access point of the hardware unit via the TII interface. The basic boot

service establishes a connection to a development system that holds the job
(the core image of the component software, including the application software,

the GM, and the local operating system of the component) for the identified

hardware unit.
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Inter-Component Channel Configuration Service. This service configures the

cluster-local inter-component communication system by establishing, naming, con-

necting, and disconnecting the ports and communication channels of the component-

LIFs within a cluster. This service observes the fate sharing principle.

Basic Execution Control Service. This service is used to control the execution of a

component. Execution control is realized by sending an appropriate trusted control

message to the TII port of the respective component. It is assumed that in every

component there is a local resource manager (LRM) that accepts and executes these

messages. The LRM is part of the GM (generic middleware) of a component. This

service can be used to reset (by a hardware reset) and restart a component with a

g-state that is contained in the restart message.

Basic Time Service. This service establishes the global time of specified precision

of a component. The global time is provided by the platform. The time-format of

the TTA is a binary time format based on the physical second. The basic time

service includes a timer interrupt service.

Basic Communication Service. This service enables the application software of a

component to send and receive time-triggered, rate-controlled, and event-triggered

messages. This service is implemented by the communication system of the plat-

form, supported by the GM of the component.

14.3.3 Optional System Services

An optional system service encapsulates a well-defined supportive functionality into a

self-contained system component that interacts with the GM of the application com-

ponents by the exchange of messages. Alternatively, an optional service can be

implemented directly in the GM of an application component. The optional services

are useful across many application domains and may be needed on many different

occasions. They simplify the system development process by providing ready build-

ing blocks, i.e., new concepts that can be reused on the basis of their specification.

The optional system services form an open set that can be extended if need arises.

Diagnostic Services. These services include the periodic g-state externalization of

a component, a membership service that informs all components of a cluster

consistently about the health state of the other components of a cluster, and a

g-state monitoring, analysis, and recovery service such that a failed component

can be reintegrated into a running cluster.

External Memory Management Service. In many applications, the local scratchpad

memory of a component must be augmented by an external memory that can hold

large amounts of data. The external memory management service, implemented in a

standalone memory component, manages the storage of and access to long-lived

data and implements needed security and integrity mechanisms.
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Security Services. A basic security service – the provision of a tamper-resistant

unique identification of any component is part of the core system services. Using

this core system service, a dedicated optional security component can be provided

that encrypts and decrypts all messages that leave or arrive in the defined security

domain. For example, such a security domain can be a system-on-chip. Depending

on the application requirements, symmetric or asymmetric ciphers can be sup-

ported. This service is used to build a secure boot service. A secure boot service

should be part of any device that is connected to the Internet.

Resource Management Services. At every level of the TTA a resource management

service is provided. At the lowest level, the component level, a local resource
manager, the LRM that is part of the GM, controls the resources local to a

component. The LRM of the component can be parameterized by a cluster resource
manager, the CRM, that takes a holistic view of the functions of the whole cluster

and may request a component to shut down (power gating) in order to save energy.

The CRM, implemented in a self-contained system component, may contain a

dynamic scheduler that integrates the scheduling of the real-time task with voltage

and frequency scaling in order to optimize the energy consumption while still

meeting all deadlines.

Gateway Services. Gateway components are needed to interface a cluster to its

external environment, i.e., other clusters, the physical process, the human operator,

or the Internet. A gateway component must resolve the property mismatches that

exist between the inner world of a cluster and the external world. In particular

a gateway component has to provide one or more of the following services

[Obm09, p. 76]:

l Control of the physical interface (mechanical and electrical) to the physical

plant.
l Protocol translation. The protocol at the external interface has to conform to the

given LIF standards of the environment, while the cluster LIF determines the

protocol at the inner interface.
l Address mapping. While the address space inside the cluster is constrained, the

name space of the environment, e.g., the Internet, is wide open. The gateway

component has to map internal addresses to outer addresses.
l Name translation. The name-spaces within a cluster and the outside world

are in many cases incoherent. The gateway component must resolve this

incoherency.
l External clock synchronization. The outer interface of a gateway component

may have access to an external time reference (e.g., GPS time) that must be

brought into the cluster.
l Firewall erection. The gateway component must protect the cluster from mali-

cious outside intruders.
l Wireless connection. A gateway component may provide a wireless connection

to the outside world and perform the connection management.
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14.4 The Time-Triggered MPSoC

The shift of the computer industry from single processor systems to multiprocessor
systems on chips (MPSoC) is driven primarily by power and energy concerns, as

discussed in Sect. 6.3.2. This shift presents a tremendous opportunity for the

embedded systems industry, since a hardware architecture that consists of many

self-contained IP-cores that can operate concurrently without any non-functional

dependencies and that are connected by an appropriate network-on-chip (NoC)

provides a much better match to the needs of many embedded applications than a

powerful single sequential processor.

Viewed from the point of the TTA, an IP-core is considered to be a component

and the whole MPSoC implements a cluster. Within the GENESYS project, funded

by the European Commission, we developed a first academic prototype of a

TTMPSoC (time-triggered multiprocessor system on chip) to understand the con-

straints and opportunities of this new technology. The project was completed in

2009 and a prototype TTMPSoC that supports an automotive application was

implemented on an FPGA [Obm09].

Figure 14.1 depicts the overall architecture of the prototype TTMPSoC with

eight IP-cores. There are two types of structural units in Fig. 14.1, the trusted
structural units (denoted by the bold boxes) and the non-trusted structural units
(normal boxes). The trusted structural units, i.e., the Trusted Network Authority
(TNA), the eight trusted interface subsystems (TISS), and the time-triggered
network on chip (TTNoC) form a trusted subsystem that is vital for the operation

of the chip and is assumed to be free of design faults. In high-reliability applica-

tions, the trusted subsystems can be hardened (e.g., by using error correcting codes)

to tolerate transient hardware faults. An arbitrary failure (caused by a transient

hardware fault or a software error, such as a Heisenbug) of a non-trusted structural
unit will not impact the operation of other, independent units of the chip.

At the center of Fig. 14.1 is the time-triggered network on chip (TTNoC) that

connects the IP-cores via the TISSes. Only the TNA has the authority to write a new

network configuration that determines the time-triggered sending slots for each

security diagnosis application
B

application
C

Time-Triggered Network on Chip (TTNoC)

cluster
resource
manager

TISS

internet
gateway

application
A

trusted
network
authority
(TNA)

TISS TISS

TISS TISS TISS TISS

Fig. 14.1 Architecture of the

prototype TTMPSoC
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non-trusted IP-core into a TISS. If a non-trusted component violates its temporal

specification, the TISS will detect and contain the failure. The cluster resource

manager, a non-trusted system component, can calculate dynamically a new com-

munication schedule at the request of an application component (in Fig. 14.1

component A, B, or C). The Cluster Resource Manager sends the new schedule to

the TNA. The TNA verifies the schedule and checks whether any safety constraint

is violated before writing the new schedule into the respective TISSes. Only the

TNA has the authority to control the execution of a component via the TII interface

of an application component. Otherwise, a single non-trusted component with a

software error could send erroneous control messages, requesting the components

to terminate, to all components and ruin the whole chip.

The architecture of Fig. 14.1 assures that any temporal fault of a non-trusted

component is contained by the TISS and will not affect the communication among

the correct components. It is thus possible to build TMR structures of three IP-cores

to mask an arbitrary fault in any one of the components. In safety-critical applica-

tions, TMR structures can be built where each IP-core of a triad resides on a different

chip in order to avoid spatial proximity faults and to tolerate a complete chip failure.

The diagnostic component monitors the behavior of the components and checks the

g-states of the components for plausibility. It is the task of the security component to

decode and encode all messages that enter or leave the TTMPSoC. A more detailed

description of the TTMPSoC, including the prototype application, can be found in

[Obm09]. The implementation of the TTNoC is described in [Pau08].

Points to Remember

l The architectural style describes the principles and structuring rules that char-

acterize an architecture. In the TTA, these principles relate to complexity

management, a recursive component concept, coherent communication by a

single mechanism, and concern for dependability and robustness.
l The availability of a fault-tolerant sparse global time base in every node of a

large embedded system is part of the foundation of the TTA. This global time

base helps to simplify a design.
l The time-triggered integration framework of the TTA ensures that real-time

transactions that span over more than one component have defined end-to-end

temporal properties.
l It is a principle of the TTA that a component can be expanded to a new cluster

without changing the specification of the LIF of the original component that

becomes the external LIF of the new cluster. After such an expansion, the

external LIF is provided by a gateway component that supports on the other

side a second LIF to the new expanded cluster (the cluster LIF).
l Depending on the point of view taken, a set of components can be viewed as a

cluster (focus on the cluster LIF of the gateway component) or as a single

component (focus on the external LIF of the gateway component).
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l Components can be integrated to form hierarchical structures or network struc-

tures.
l It is an important design principle of the TTA that there is only a single

communication mechanism among the components, no matter whether the

components are close together, as in a system-on-chip, or far away at another

place in the world, connected by the Internet.
l The core system services of the TTA are minimal in the sense that only those

services that are absolutely indispensable to build higher-level services or to

maintain the desired properties of the architecture are included in the set of core

system services.
l The core services must be free of NDDCs (non-deterministic design constructs),

such that deterministic computations can be implemented.
l A TTA job is the core image of the component software that includes the

application software, the GM, and the local operating system of the component.
l At every level of the TTA, a resource management service is provided. At the

lowest level, the component level, a local resource manager, the LRM that is

part of the GM, controls the resources local to a component.
l The LRM of the component can be parameterized by a cluster resource manager

that takes a holistic view of the functions of the whole cluster.
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Review Questions and Problems

14.1 List the problems where the availability of a global time base contributes to

finding a solution in a distributed real-time system!

14.2 What is the fate-sharing principle?
14.3 List the design principles of the TTA that help to build dependable systems!

14.4 Why is deterministic behavior a desired property of a real-time transaction?

14.5 Why should components publish their ground state periodically?

14.6 How can the availability of a global time strengthen a security protocol?
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14.7 Why is a large monolithic real-time operating system problematic in real-

time systems?

14.8 How are conventional operating system functions implemented in the TTA?

14.9 What are the differences between core system services and optional system
services in the TTA?

14.10 What are the functions of the generic middleware?

14.11 Why is it necessary to split some system functions?

14.12 What is included in the concept of a TTA job?

14.13 List the core system services of the TTA!

14.14 List some of the optional system services of the TTA!

14.15 What are the functions of a gateway component?
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Abbreviations

Note: This annex contains a list of frequently used abbreviations.

AES Advanced Encryption Standard

ALARP As Low As Reasonably Practical

API Application Programming Interface

ASIC Application Specific Integrated Circuit

AVB Audio Video Bus

BMTS Basic Message Transport Service

CAN Control Area Network

CCF Concurrency Control Field

EDF Earliest-Deadline-First

EMI Electro-Magnetic Interference

EPC Electronic Product Code

ET Event-Triggered

FRU Field-Replaceable Unit

FTU Fault-Tolerant Unit

GPS Global Positioning System

IoT Internet of Things

LIF Linking Interface

LL Least-Laxity

MARS Maintainable Real-Time System

MPSoC Multiprocessor System on Chip

MSD Message Structure Declaration

NBW Non-Blocking Write

NDDC Non-Deterministic Design Construct

NoC Network-on-Chip

NTP Network Time Protocol

PAR Positive-Acknowledgment-or-Retransmission

PFSM Periodic Finite State Machine

PIM Platform Independent Model

PSM Platform Specific Model

RFID Radio Frequency Identification

RT Real-Time

SOC Sphere of Control

SoC System on Chip

SRU Smallest Replaceable Unit

TADL Task Descriptor List

TAI International Atomic Time

(continued)

H. Kopetz, Real-Time Systems: Design Principles for Distributed Embedded Applications,
Real-Time Systems Series, DOI 10.1007/978-1-4419-8237-7,
# Springer Science+Business Media, LLC 2011
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TDMA Time-Division Multiple Access

TMR Triple-Modular Redundancy

TT Time Triggered

TTA Time-Triggered Architecture

TTEthernet Time-Triggered Ethernet

TTP Time-Triggered Protocol

UID Unique Identifier

UTC Universal Time Coordinated

WCAO Worst-Case Administrative Overhead

WCCOM Worst-Case Communication Delay

WCET Worst-Case Execution Time

WSN Wireless Sensor Network
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Glossary

Note: All terms that are defined in this glossary are put in italics. At the end of each
entry the section of the book that introduces or discusses the term is mentioned in

the parenthesis.

Absolute Timestamp An absolute timestamp of an event e is the timestamp of

this event that is generated by the reference clock
(3.1.2).

Accuracy Interval The maximum permitted time interval between the point
of observation of a real-time entity and the point of use
of the corresponding real-time image (5.4).

Accuracy of a Clock The accuracy of a clock denotes the maximum offset of

a given clock from the external time reference during the

time interval of interest (3.1.3).

Action An action is the execution of a program or a communi-

cation protocol (1.3.1).

Action Delay The action delay is the maximum time interval between

the start of sending a message and the instant when this

message becomes permanent at the receiver (5.5.1).
Actuator A transducer that accepts data and trigger information

from a gateway component and realizes the intended

physical effect in the controlled object (9.5).
Advanced Encryption

Standard (AES)

An international standard for the encryption of data

(6.2.2).

Audio Video

Bus (AVB)

The IEEE 802.1 audio/video bridging (AVB) task force

develops a set of protocols based on the Ethernet stan-

dard that meets the requirements of multimedia systems

(7.4.4).

Agreed Data An agreed data element is a measured data element that
has been checked for plausibility and related to other

measured data elements, e.g., by the use of model of the

controlled object. An agreed data element has been

judged to be a correct image of the corresponding real-

time entity (➔ raw data, measured data) (9.6).
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Agreement Protocol An agreement protocol is a protocol that is executed

among a set of components of a distributed system to

come to a common (agreed) view about the state of the

world, both in the discrete value domain and in the

sparse time domain (9.6).

Alarm Monitoring Alarm monitoring refers to the continuous observation

of the RT entities to detect an abnormal behavior of the

controlled object (1.2.1).
Alarm Shower An alarm shower is a correlated set of alarms that is

caused by a single primary event (1.2.1).
Analytic Rational

Subsystem

A conscious human problem-solving subsystem that

operates according to the laws of causality and logic

(2.1.1).

Anytime Algorithm An anytime algorithms consist of a root segment that
calculates a first approximation of the result of sufficient

quality and a periodic segment that improves the quality

of the previously calculated result. The periodic seg-

ment is executed repeatedly until the deadline is reached

(10.2.3).

Aperiodic Task An aperiodic task is a taskwhere neither the task request
times nor the minimum time interval between successive

requests for activation are known (➔ periodic task, ➔
sporadic task) (10.1.2).

Application

Programming

Interface (API)

The interface between an application program and the

operating system within a component (9.1.4).

A Priori Knowledge Knowledge about the future behavior of a system that is

available ahead of time (1.5.5).

ARINC 629 Protocol A medium access protocol that controls access to a single

communication channel by a set of components. It is

based on a set of carefully selected time-outs (7.4.2).

Assumption Coverage Assumption coverage is the probability that assumptions

that are made in the model building process hold in

reality. The assumption coverage limits the probability

that conclusions derived from a perfect model will be

valid in the real world (1.5.3).

Atomic Action An atomic action is an action that has the all-or-nothing

property. It eithercompletesanddelivers the intendedresult

or does not have any effect on its environment (4.2.3).

Atomic Data Structure An atomic data structure is a data structure that has to be
interpreted as a whole (4.3).

Availability Availability is a measure of the correct service delivery

regarding the alternation of correct and incorrect ser-

vice, measured by the fraction of time that the system is

ready to provide the service (1.4.4).
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Babbling Idiot A component of a distributed computer system that

sends messages outside the specified time interval is

called a babbling idiot (4.7.1).
Back-Pressure Flow

Control

In back-pressure flow control the receiver of a sequence
of messages exerts back pressure on the sender so that

the sender will not outpace the receiver (7.3.2).

Basic Message

Transport

Service (BMTS)

The basic message transport service transports a mes-
sage from a sending component to one or more receiv-

ing components (7.2.1).

Benign Failure A failure is benign if the worst-case failure costs are of

the same order of magnitude as the loss of the normal

utility of the system (6.1.3).

Best Effort A real-time system is a best-effort system if it is not

possible to establish the temporal properties by analyti-

cal methods, even if the load- and fault hypothesis holds
(➔ guaranteed timeliness) (1.5.3).

Bit-length of

a Channel

The bit length of a channel denotes the number of bits

that can traverse the channel within one propagation
delay (7.2.2).

Bus Guardian The independent hardware unit of a TTP controller that

ensures fail silence in the temporal domain (7.5.1).

Byzantine Error A Byzantine error occurs if a set of receivers

observes different (conflicting) values of a RT entity.
Some or all of these values are incorrect (synonym:

malicious error, two-faced error, inconsistent error)

(3.4.1).

Causal Order A causal order among a set of events is an order that

reflects the cause-effect relationships between the events
(3.1.1).

Causality The causality relationship between a cause C and an

event E is defined as follows: If C happens, then E is

always produced by it (2.1.1).

Clock A clock is a device for time measurement that contains a

counter and a physical oscillation mechanism that peri-

odically generates an event, the➔ tick or➔ microtick of
the clock, to increase the counter (3.1.2).

Cluster A cluster is a subsystem of a real-time system. Examples

of clusters are the real-time computer system, the opera-
tor, or the controlled object (1.1).

Cognitive Complexity The elapsed time needed to ➔ understand a model by

a given observer is a measure for the cognitive effort

and thus for the cognitive complexity of a model relative

to the observer. We assume that the given observer

is representative for the intended user group of the

model.
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Complex Task (C-task) A complex task (C-task) is a task that contains a block-
ing synchronization statement (e.g., a semaphore opera-

tion wait) within the task body (9.2.3).

Component A component is a hardware-software unit, i.e., a self-

contained computer including system- and application

software that performs a well-defined function within a

distributed computer system (4.1.1).

Composability An architecture is composable regarding a specified

property if the system integration will not invalidate

this property, provided it has been established at the

subsystem level (4.7.1).

Computational Cluster A subsystem of a real-time system that consists of a

set of components interconnected by a real-time com-
munication network (1.1).

Concept A concept is a category that is augmented by a

set of beliefs about its relations to other categories.
The set of beliefs relates a new concept to already

existing concepts and provides for an implicit theory
(2.1.2).

Conceptual Landscape The conceptual landscape refers to the personal knowl-
edge base that has been built up and maintained by

an individual in the experiential and rational subsystem
of the mind (2.2).

Concrete World

Interface

The concrete world interface is the physical I/O inter-
face between an interface component and an external

device or another external component (4.5).

Concurrency Control

Field (CCF)

The concurrency control field (CCF) is a single-word

data field that is used in the NBW protocol (9.4.2).
Consistent Failure A consistent failure occurs if all users see the same

erroneous result in a multi-user system (6.1.3).

Contact Bounce The random oscillation of a mechanical contact imme-

diately after closing (9.5.2).

Control Area

Network (CAN)

The control area network (CAN) is a low-cost event-
triggered communication network that is based on

the carrier-sense multiple-access collision-avoidance

technology (7.3.2).

Controlled Object The controlled object is the industrial plant, the process,
or the device that is to be controlled by the real-time
computer system (1.1).

Convergence Function The convergence function denotes the maximum offset
of the local representations of the global time within an

ensemble of clocks (3.4).
Deadline A deadline is the instant when a result should/must be

produced (➔ soft deadline, firm deadline, and hard
deadline) (1.1).
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Deadline Interval The deadline interval is the interval between the task
request time and the deadline (10.1).

Determinism A physical system behaves deterministically if given an

initial state at instant t and a set of future timed inputs,

then the future states and the values and times of future

outputs are entailed. In a deterministic distributed com-

puter system, we must assume that all events, e.g., the

observation of the initial state at instant t and the timed

inputs, are sparse events on a sparse global time base

(5.6.1).

Drift The drift of a physical clock k between microtick i and
microtick i+1 is the frequency ratio between this clock k
and the reference clock at the time ofmicrotick i. (3.1.2).

Drift Offset The drift offset denotes the maximum deviation between

any two good clocks if they are free running during the

resynchronization interval (3.1.4).

Duration A duration is a section of the timeline (3.1.1).

Dynamic Scheduler A dynamic scheduler is a scheduler that decides at run
time after the occurrence of a significant event which
task is to be executed next (10.4).

Earliest-Deadline-First

(EDF) Algorithm

An optimal dynamic preemptive scheduling algorithm

for scheduling a set of independent tasks (10.4.1).
Electro-Magnetic

Interference (EMI)

The disturbance of an electronic system by electromag-

netic radiation (11.3.4).

Electronic Product

Code (EPC)

A code designed by the RFID community that can be used

to uniquely identify every product on the globe (13.4.2).

Embedded System A real-time computer that is embedded in a well speci-

fied larger system, consisting in addition to the embed-

ded computer of a mechanical subsystem and, often, a

man-machine interface (➔ intelligent product) (1.6.1).
Emergence We speak of emergence when the interactions of sub-

systems give rise to unique global properties at the

system level that are not present at the level of the

subsystems.

End-to-End Protocol An end-to-end protocol is a protocol between the users

(machines or humans) residing at the end points of a

communication channel (1.7).

Environment of

a Computational

Cluster

The environment of a given computational cluster is the
set of all clusters that interact with this cluster, either
directly or indirectly (1.1).

Error An error is that part of the state of a system that deviates

from the intended specification (6.1.2).

Error-Containment

Coverage

Probability that an error that occurs in an error-
containment region is detected at one of the interfaces
of this region (6.4.2).
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Error-Containment

Region

A subsystem of a computer system that is encapsulated

by error-detection interfaces such that the there is a high
probability (the ➔ error containment coverage) that the
consequences of an error that occurs within this subsys-
tem will not propagate outside this subsystem without

being detected (6.4.2).

Event An event is a happening at a cut of the time-line. Every

change of state is an event (1.1).
Event Message A message is an event message if it contains information

about events and if every new version of the message

is queued at the receiver and consumed on reading

(➔ state message) (4.3.3).
Event-triggered

(ET) Observation

An observation is event-triggered if the point of obser-
vation is determined by the occurrence of an event other
than a tick of a clock (5.2).

Event-Triggered

(ET) System

A real-time computer system is event-triggered (ET)

if all communication and processing activities are trig-

gered by events other than a clock tick (1.5.5).
Exact Voting A voter that considers two messages the same if they

contain the exactly same sequence of bits (➔ inexact

voter) (6.4.2).

Execution Time The execution time is the duration it takes to execute

an action by a computer. If the speed of the oscillator

that drives a computer is increased, the execution time is

decreased. The worst-case execution time is called ➔
WCET (4.1.2).

Explicit Flow Control In explicit flow control the receiver of a message sends

an explicit acknowledgment message to the sender,

informing the sender that the previously sent message

has correctly arrived and that the receiver is now ready

to accept the next message (➔ flow control, ➔ implicit
flow control) (7.2.3).

External Clock

Synchronization

The process of synchronization of a clock with a refer-
ence clock (3.1.3).

Fail-Operational

System

A fail-operational system is a real-time system where a

safe state cannot be reached immediately after the

occurrence of a failure (1.5.2).
Fail-Safe System A fail-safe system is a real-time system where a safe

state can be identified and quickly reached after the

occurrence of a failure (1.5.2).
Fail-Silence A subsystem is fail-silent if it either produces correct

results or no results at all, i.e., it is quiet in case it cannot

deliver the correct service (6.1.1).

Failure A failure is an event that denotes a deviation of the

actual service from the intended service (6.1.3).
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Fault A fault is the cause of an error (6.1.1).
Fault Hypothesis The fault hypothesis identifies the assumptions that

relate to the type and frequency of faults that a fault-

tolerant computer system is supposed to handle (6.1.1).

Fault-Tolerant Average

Algorithm (FTA)

A distributed clock synchronization algorithm that han-

dles Byzantine failures of clocks (3.4.3).
Fault-Containment

Unit (FCU)

A unit that contains the direct consequences of a fault.

Different FCUs must fail independently. A component
should be an FCU. (6.4.2).

Fault-Tolerant

Unit (FTU)

A unit consisting of a number of replica determinate ➔
FCUs that provides the specified service even if some of

its constituent FCUs (components) fail (6.4.2).
Field Replaceable

Unit (FRU)

An FRU is a subsystem that is considered atomic from

the point of view of a repair action (1.4.3).

Firm Deadline A deadline for a result is firm if the result has no utility

after the deadline has passed (1.1).

FIT A FIT is a unit for expressing the failure rate. 1 FIT is

1 failure/10-9 h (1.4.1).

Flow Control Flow control assures that the speed of the information

flow between a sender and a receiver is such that the

receiver can keep up with the sender (➔ explicit flow
control, ➔ implicit flow control) (7.2.3).

Gateway component A component of a distributed real-time system that is a

member of two clusters and implements the relative

views of these two interacting clusters (4.5).
Global Time The global time is an abstract notion that is approxi-

mated by a properly selected subset of the microticks of
each synchronized local clock of an ensemble. The

selected microticks of a local clock are called the ticks
of the global time (3.2.1).

Granularity of a Clock The granularity of a clock is the nominal number of

microticks of the reference clock between two micro-
ticks of the clock (3.1.2).

Ground (g) State The ground state of a component of a distributed system
at a given level of abstraction is a state at an instant

where there is a minimal dependency of future behavior

on past behavior. At the ground state instant all infor-

mation of the past that is considered relevant for the

future behavior is contained in a declared ground state

data structure. At the ground state instant no task is

active and all communication channels are flushed.

The instants of the ground state are ideal for reintegrat-

ing components (4.2.3).

Guaranteed Timeliness A real-time system is a guaranteed timeliness system if

it is possible to reason about the temporal adequacy of
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the design without reference to probabilistic arguments,

provided the assumptions about the load- and fault
hypothesis hold (➔ best effort) (1.5.3).

Hamming Distance The Hamming distance is one plus the maximum num-

ber of bit errors in a codeword that can be detected by

syntactic means (6.3.3).

Hard Deadline A deadline for a result is hard if a catastrophe can occur
in case the deadline is missed (1.1).

Hard Real-Time

Computer System

A real-time computer system that must meet at least one

hard deadline (Synonym: safety-critical real-time com-
puter system) (1.1).

Hazard A hazard is an undesirable condition that has the poten-

tial to cause or contribute to an accident (11.4.2).

Hidden Channel A communication channel outside the given computa-
tional cluster (5.5.1).

Idempotency Idempotency is a relation between a set of replicated

messages arriving at the same receiver. A set of repli-

cated messages is idempotent if the effect of receiving

more than one copy of a message is the same as receiv-

ing only a single copy (5.5.4).

Implicit Flow Control In implicit flow control, the sender and receiver agree a
priori, i.e., before the start of a communication session,

about the instants when messages will be sent. The

sender commits to send only messages at the agreed

instants, and the receiver commits to accept all messages

sent by the sender, as long as the sender fulfills its

obligation (➔ explicit flow control, ➔ flow control)
(7.2.3).

Inexact Voting A voter that considers two messages the “same” if both

of them conform to some application specific “same-

ness” criterion (➔ exact voter) (6.4.2).
Instant An instant is a cut of the timeline (1.1).

Instrumentation

Interface

The instrumentation interface is the interface between the
real-time computer system and the controlled object (1.1).

Intelligent Actuator An intelligent actuator consists of an actuator and a

microcontroller, both mounted together in a single hous-

ing (9.5.5).

Intelligent Product An intelligent product is a self-contained system that

consists of a mechanical subsystem, a user interface,
and a controlling embedded real-time computer system
(➔ embedded system) (1.6.1).

Intelligent Sensor An intelligent sensor consists of a sensor and a micro-

controller such that measured data is produced at the

output interface. If the intelligent sensor is fault-tolerant,
agreed data is produced at the output interface (9.5.5).
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Interface An interface is a common boundary between two sub-

systems (4.4).

Interface Component A component with an interface to the external environ-

ment of a component. An interface component is a

gateway (4.5).
Internal Clock

Synchronization

The process of mutual synchronization of an ensemble

of clocks in order to establish a global time with a

bounded precision (3.1.3).

International

Atomic Time (TAI)

An international time standard, where the second is

defined as 9 192 631 770 periods of oscillation of a

specified transition of the Cesium atom 133 (3.1.4).

Intrusion the successful exploitation of a vulnerability (6.2).
Intuitive Experiental

Problem Solving

System

A human preconscious emotionally-based problem-

solving subsystem that operates holistically, automati-

cally, and rapidly, and demands minimal cognitive

resources for its execution (2.1.1).

Internet of Things (IoT) The direct connection of physical things to the Internet

such that remote access and control of physical devices

is enabled (13).

Irrevocable action An action that cannot be undone, e.g., drilling a hole,

activation of the firing mechanism of a firearm (1.5.1).

Jitter The jitter is the difference between the maximum and

the minimum duration of an action (processing action,

communication action) (1.3.1).

Laxity The laxity of a task is the difference between the dead-
line intervalminus the execution time (theWCET) of the
task (9.2.2).

Least-Laxity

(LL) Algorithm

An optimal dynamic preemptive scheduling algorithm

for scheduling a set of independent tasks (10.4.1).
Logical Control Logical control is concerned with the control flow

within a task. The logical control is determined by the

given program structure and the particular input data to

achieve the desired data transformation (➔ temporal
control) (4.1.3).

Maintainability TheMaintainability (d) is the probability that the system
is restored to its operational state and restarted within a

time interval d after a failure (1.4.3).

Malicious Code Attack A malicious code attack is an attack where an adversary

inserts malicious code, e.g., a virus, a worm, or a Trojan

horse, into the software in order that the attacker gets

partial or full control over the system (6.2.2).

Measured Data A measured data element is a raw data element that has
been preprocessed and converted to standard technical

units. A sensor that delivers measured data is called an

intelligent sensor (➔ raw data, agreed data) (9.6.1).
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Membership Service A membership service is a service in a distributed sys-

tem that generates consistent information about the

operational state (operating or failed) of all components
at agreed instants (membership points). The length of

the interval between a membership point and the

moment when the consistent membership information

is available at the other components is a quality of

service parameter of the membership service (5.3.2).

Message Structure

Declaration (MSD)

A specification that explains how the data field of a

message is structured into syntactic units and assigns

names to these syntactic units. The names identify the

concepts that explain the meaning of the data (4.6.2).

Microtick A microtick of a physical clock is a periodic event
generated by this clock (➔ tick) (3.1.2).

Non-Blocking Write

Protocol (NBW)

The non-blocking write protocol (NBW) is a synchroni-

zation protocol between a single writing task and many

reading tasks that achieves data consistency without

blocking the writer (9.4.2).

Non-Deterministic

Design Construct

(NDDC)

A non-deterministic design construct is a design con-

struct that produces unpredictable result either in the

value domain or the temporal domain (5.6.3).

Observation An observation of a real-time entity is an atomic triple

consisting of the name of the real-time entity, the instant

of the observation, and the value of the real-time entity

(5.2).

Offset The offset between two events denotes the time differ-

ence between these events (3.1.3).
Periodic Finite

State Machine (PFSM)

A PFSM is an extension of the finite state machine

model to include the progression of real time (4.1.3).

Periodic Task A periodic task is a task that has a constant time interval

between successive task request times (➔ aperiodic
task, ➔ sporadic task) (10.1.2).

Permanence Permanence is a relation between a given message and

all related messages that have been sent to the same

receiver before this given message has been sent. A

particular message becomes permanent at a given com-
ponent at the moment when it is known that all earlier

sent related messages have arrived (or will never arrive)

(5.5.1).

Phase-Aligned

Transaction

A phase-aligned transaction is a real-time transaction
where the constituting processing and communication

actions are synchronized (5.4.1).

Point of Observation The instant when a real-time entity is observed (1.2.1).
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Positive-

Acknowledgment-

or-Retransmission

(PAR) protocol

The Positive-Acknowledgment-or-Retransmission (PAR)
protocol is an event-triggered protocol where a message

sent by the sendermust be positively acknowledged by the

receiver (7.1.2).

Precision The precision of an ensemble of clocks denotes the

maximum offset of respective ticks of any two clocks

of the ensemble over the period of interest. The preci-
sion is expressed in the number of ticks of the reference
clock (3.1.3).

Primary Event A primary event is the cause of an alarm shower (1.2.1).
Priority Ceiling

Protocol

A scheduling algorithm for scheduling a set of depen-

dent periodic tasks (10.4.2).
Process Lag The delay between applying a step function to an input

of a controlled object and the start of response of the

controlled object (1.3.1).
Propagation Delay The propagation delay of a communication channel

denotes the time interval it takes for a single bit to

traverse the channel (7.2.2).

Protocol A protocol is a set of rules that governs the communica-

tion among partners (2.2.3).

Radio Frequency

Identification (RFID)

A technology for the identification of objects by elec-

tronic means (13.4)

Rare Event A rare event is a seldomly occurring event that is of critical

importance. In a number of applications the predictable

performance of a real-time computer system in rare event
situations is of overriding concern (1.2.1).

Rate-Monotonic

Algorithm

A dynamic preemptive scheduling algorithm for sched-
uling a set of independent periodic tasks (10.4.1).

Raw Data A raw data element is an analog or digital data element

as it is delivered by an unintelligent sensor (➔ measured
data, agreed data) (9.6.1).

Real-Time (RT) Entity A real-time (RT) entity is a state variable, either in the

environment of the computational cluster, or in the

computational cluster itself, that is relevant for the

given purpose. Examples of RT entities are: the temper-

ature of a vessel, the position of a switch, the setpoint

selected by an operator, or the intended valve position

calculated by the computer (5.1).

Real-Time (RT)

Image

A real-time (RT) image is a current picture of a real-time
entity (5.3).

Real-Time

Computer System

A real-time computer system is a computer system, in

which the correctness of the system behavior depends

not only on the logical results of the computations, but

also on the physical time when these results are pro-

duced. A real-time computer system can consist of one

or more computational clusters (1.1).
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Real-time Data Base The real-time database is formed by the set of all tem-
porally accurate real-time images (1.2.1).

Real-Time Object A real-time (RT) object is a container inside a computer

for a RT entity or a RT image. A clock with a granularity
that is in agreement with the dynamics of the RT object
is associated with every RT object (5.3.2).

Real-Time Transaction A real-time (RT) transaction is a sequence of computa-

tional and communication actions between a stimulus

from the environment and a response to the environment

of a computational cluster (1.7.3).
Reasonableness

Condition

The reasonableness condition of clock synchronization

states that the granularity of the global time must be

larger than the precision of the ensemble of clocks
(3.2.1).

Reference Clock The reference clock is an ideal clock that ticks always in
perfect agreement with the international standard of

time (3.1.2).

Reliability The reliability R (t) of a system is the probability that a

system will provide the specified service until time t,
given that the system was operational at t ¼to (1.4.1).

Replica Determinism Replica Determinism is a desired relation between repli-

cated RT objects. A set of replicated RT objects is

replica determinate if all objects of this set have the

same visible state and produce the same output mes-

sages at instants that are at most an interval of d time

units apart (5.6).

Resource Adequacy A real-time computer system is resource adequate if

there are enough computing resources available to han-

dle the specified peak load and the faults specified in the
fault hypothesis. Guaranteed response systems must be

based on resource adequacy (➔ guaranteed timeliness)
(1.5.4).

Rise Time The rise time is the time required for the output of a

system to rise to a specific percentage of its final equi-

librium value as a result of step change on the input

(1.3.1).

Risk Risk is the product of hazard severity and hazard proba-
bility. The severity of a hazard is the worst-case damage

of a potential accident related to the hazard (11.4.2).

Safety Safety is reliability regarding critical failure modes

(1.4.2).

Safety Case A safety case is a combination of a sound set of argu-

ments supported by analytical and experimental evi-

dence substantiating the safety of a given system

(11.4.3).
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Safety Critical Real-

Time Computer System

Synonym to hard real-time computer system (1.1).

Sampling In sampling, the state of a RT entity is periodically

interrogated by the computer system at instants that are

in the sphere of control of the computer system. If a

memory element is required to store the effect of an

event, the memory element is outside the sphere of
control of the computer system (1.3.1).

Schedulability Test A schedulability test determines whether there exists a

schedule such that all tasks of a given set will meet their

deadlines (10.1.1).

Semantic Agreement An agreement among measured variables is called

semantic agreement if the meanings of the different

measured values are related to each other by a process

model that is based on a priori knowledge about the

physical characteristics and the dynamics of the con-
trolled object (9.6.3).

Semantic Content The essential meaning of a statement or variable as

understood by an end-user. The same semantic content
can be represented in different syntactic forms (2.2.4).

Signal Conditioning Signal conditioning refers to all processing steps that are
required to generate a measured data element from a

raw data element (1.2.1).
Soft Deadline A deadline for a result is soft if the result has utility even

after the deadline has passed (1.1).

Soft Real-Time

Computer System

A real-time computer system that concerned with any

soft deadlines only (1.1).

Sparse Event an event that occurs in the active interval of a ➔ sparse

time base (3.3).

Sparse Time Base a time-base in a distributed computer systems where the

physical time is partitioned into an infinite sequence of

active and silent intervals and where sparse events may

be generated only in the active intervals (3.3).

Sphere of Control

(SOC)

The sphere of control of a subsystem is defined by the

set of RT entities the values of which are established

within this subsystem (5.1.1).

Sporadic Task A sporadic task is a taskwhere the task request times are

not known but where it is known that a minimum time

interval exists between successive requests for execu-

tion (➔ periodic task, ➔ aperiodic task) (10.1.2).
Spoofing Attack A security attack where an adversary masquerades as a

legitimate user in order to gain unauthorized access to a

system (6.2.2).

State The state of a component at a given instant is a data

structure that contains all information about the past that
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is considered relevant for the future operation of the

component (4.2).

State Estimation State estimation is the technique of building a model of a

RT entity inside a RT object to compute the probable

state of a RT entity at a selected future instant, and to

update the related RT image accordingly (5.4.3).

State Message A message is a state message if it contains information

about states, if a new version of the message replaces the

previous version, and the message is not consumed on

reading (➔ event message) (4.3.4).
Synchronization

Condition

The synchronization condition is a necessary condition

for the synchronization of clocks. It relates the conver-
gence function, the drift offset and the precision (3.4.1).

System of Systems

(SoS)

A system consisting of a set of nearly autonomous

constituent systems that decide to cooperate in order to

achieve a common objective (4.7.3).

Task Descriptor

List (TADL)

The task descriptor list (TADL) is a static data structure
in a time-triggered operating system that contains the

instants when the tasks have to be dispatched (9.2.1).

Task Request Time The task request time is the instant when a task becomes

ready for execution (10.1.2).

Task A task is the execution of a program (➔ simple task, ➔
complex task) (4.2.1).

Temporal Accuracy A real-time image is temporally accurate if the time

interval between the moment “now” and instant when

the current value of the real-time image was the value of

the corresponding RT entity is smaller than an applica-

tion specific bound (5.4).

Temporal Control Temporal control is concerned with the determination of

the real-time instants when a task must be activated or

when a taskmust be blocked (➔ logical control) (4.1.3).
Temporal Failure A temporal failure occurs when a value is presented at

the system-user interface outside the intended interval

of real-time. Temporal failures can only exist if the

system specification contains information about the

expected temporal behavior of the system (Synonym

timing failure) (6.1.3).

Temporal Order The temporal order of a set of events is the order of

events as they occurred on the time line (3.1.1).

Thrashing The phenomenon that a system’s throughput decreases

abruptly with increasing load is called thrashing (7.2.4).
Tick A tick (synonym: macrotick) of the global time is a

selected microtick of the local clock. The offset between
any two respective global ticks of an ensemble of syn-

chronized clocks must always be less than the precision
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of the ensemble (➔ microtick, reasonableness condi-
tion) (3.2.1).

Time Stamp A timestamp of an event with respect to a given clock is

the state of the clock at the instant of occurrence of the

event (3.1.2).
Time-Division Multiple

Access (TDMA)

Time-Division Multiple Access is a time-triggered com-

munication technology where the time axis is statically

partitioned into slots. Each slot is statically assigned to a

component. A component is only allowed to send a

message during its slot (7.5).

Time-Triggered

Architecture (TTA)

A distributed computer architecture for real-time appli-

cations, where all components are aware of the progres-

sion of the global time and where most actions are

triggered by the progression of this global time.

Time-Triggered

Ethernet (TTEthernet)

An extension of standard Ethernet that supports deter-

ministic message transport (7.5.2).

Time-Triggered

Protocol (TTP)

A communication protocol where the instant of starting

a message transmission is derived from the progression

of the global time (7.5.1).

Timed Message A timed message is a message that contains the time-

stamp of an event (e.g., point of observation) in the data

field of the message (9.1.1).

Timing Failure ➔ Temporal Failure

Token Protocol A communication protocol where the right to transmit is

contained in a token that is passed among the communi-

cating partners (7.4.1).

Transducer A device converting energy from one domain into

another. The device can either be a sensor or an actuator
(9.5).

Transient Fault A transient fault is a fault that exists only for a short

period of time after which it disappears. The hardware is

not permanently affected by a transient fault (6.1.1).

Trigger A trigger is an event that causes the start of some action

(1.5.5).

Trigger Task A trigger task is a time-triggered task that evaluates a

condition on a set of temporally accurate variables and

generates a trigger for an application task (9.2.2).
Triple-Modular

Redundancy (TMR)

A fault-tolerant system configuration where a fault-tol-
erant unit (FTU) consists of three synchronized replica

deterministic components. A value or timing failure of

one component can be masked by the majority (➔ vot-
ing) (6.4.2).

Understanding Understanding develops if the concepts and relation-

ships that are employed in the representation a model

have been adequately linked with the ➔ conceptual
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landscape and the methods of reasoning of the observer

(2.1.3).

Universal Time

Coordinated (UTC)

An international time standard that is based on astro-

nomical phenomena (➔ International Atomic Time)
(3.1.4).

Value Failure A value failure occurs if an incorrect value is presented

at the system-user interface (6.1.3).
Voter A voter is a unit that detects and masks errors by com-

paring a number of independently computed input mes-

sages and delivers an output message that is based on the

analysis of the inputs (➔ exact voting,➔ inexact voting)
(6.4.2).

Vulnerability A deficiency in the design or operation of a computer

system that can lead to a security incident, such as an

intrusion (6.2).

Watchdog A watchdog is an independent external device that

monitors the operation of a computer. The computer

must send a periodic signal (life sign) to the watchdog.
If this life sign fails to arrive at the watchdog within the

specified time interval, the watchdog assumes that the

computer has failed and takes some action (e.g., the

watchdog forces the controlled object into the safe

state) (9.7.4).

Worst-Case

Administrative

Overhead (WCAO)

The worst-case execution time of the administrative

services provided by an operating system (5.4.2).

Worst-Case

Communication

Delay (WCCOM)

The worst-case communication delay is the maximum

duration it may take to complete a communication

action under the stated load- and fault hypothesis
(5.4.1).

Worst-Case Execution

Time (WCET)

The worst-case execution time (WCET) is the maximum

duration it may take to complete an action under the

stated load- and fault hypothesis, quantified over all

possible input data (10.2).
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